4,653 research outputs found

    The NLO contributions to the scalar pion form factors and the O(αs2){\cal O}(\alpha_s^2) annihilation corrections to the BππB\to \pi\pi decays

    Get PDF
    In this paper, by employing the kTk_{T} factorization theorem, we made the first calculation for the space-like scalar pion form factor Q2F(Q2)Q^2 F(Q^2) at the leading order (LO) and the next-to-leading order (NLO) level, and then found the time-like scalar pion form factor Fa,I(1)F'^{(1)}_{\rm a,I} by analytic continuation from the space-like one. From the analytical evaluations and the numerical results, we found the following points: (a) the NLO correction to the space-like scalar pion form factor has an opposite sign with the LO one but is very small in magnitude, can produce at most 10%10\% decrease to LO result in the considered Q2Q^2 region; (b) the NLO time-like scalar pion form factor Fa,I(1)F'^{(1)}_{\rm a,I} describes the O(αs2){\cal O}(\alpha_s^2) contribution to the factorizable annihilation diagrams of the considered BππB \to \pi\pi decays, i.e. the NLO annihilation correction; (c) the NLO part of the form factor Fa,I(1)F'^{(1)}_{\rm a,I} is very small in size, and is almost independent with the variation of cutoff scale μ0\mu_0, but this form factor has a large strong phase around 55-55^\circ and may play an important role in producing large CP violation for BππB\to \pi\pi decays; and (d) for B0π+πB^0 \to \pi^+\pi^- and π0π0 \pi^0\pi^0 decays, the newly known NLO annihilation correction can produce only a very small enhancement to their branching ratios, less than 3%3\% in magnitude, and therefore we could not interpret the well-known ππ\pi\pi-puzzle by the inclusion of this NLO correction to the factorizable annihilation diagrams.Comment: 26 pages, 12 figures, 1 Table; Minor correction

    Systematic study of proton radioactivity of spherical proton emitters within various versions of proximity potential formalisms

    Full text link
    In this work we present a systematic study of the proton radioactivity half-lives of spherical proton emitters within the Coulomb and proximity potential model. We investigate 28 different versions of the proximity potential formalisms developed for the description of proton radioactivity, α\mathcal{\alpha} decay and heavy particle radioactivity. It is found that 21 of them are not suitable to deal with the proton radioactivity, because the classical turning points rinr_{\text{in}} cannot be obtained due to the fact that the depth of the total interaction potential between the emitted proton and the daughter nucleus is above the proton radioactivity energy. Among the other 7 versions of the proximity potential formalisms, it is Guo2013 which gives the lowest rms deviation in the description of the experimental half-lives of the known spherical proton emitters. We use this proximity potential formalism to predict the proton radioactivity half-lives of 13 spherical proton emitters, whose proton radioactivity is energetically allowed or observed but not yet quantified, within a factor of 3.71.Comment: 10 pages, 5 figures. This paper has been accepted by The European Physical Journal A (in press 2019

    Anatomy of BsPVB_s \to PV decays and effects of next-to-leading order contributions in the perturbative QCD factorization approach

    Full text link
    In this paper, we will make systematic calculations for the branching ratios and the CP-violating asymmetries of the twenty one Bˉs0PV\bar{B}^0_s \to PV decays by employing the perturbative QCD (PQCD) factorization approach. Besides the full leading-order (LO) contributions, all currently known next-to-leading order (NLO) contributions are taken into account. We found numerically that: (a) the NLO contributions can provide 40%\sim 40\% enhancement to the LO PQCD predictions for B(Bˉs0K0Kˉ0){\cal B}(\bar{B}_s^0 \to K^0 \bar{K}^{*0}) and B(Bˉs0K±K) {\cal B}(\bar{B}_s^0 \to K^{\pm}K^{*\mp}), or a 37%\sim 37\% reduction to \calb(\bar{B}_s^0 \to \pi^{-} K^{*+}), and we confirmed that the inclusion of the known NLO contributions can improve significantly the agreement between the theory and those currently available experimental measurements, (b) the total effects on the PQCD predictions for the relevant BPB\to P transition form factors after the inclusion of the NLO twist-2 and twist-3 contributions is generally small in magnitude: less than 10% 10\% enhancement respect to the leading order result, (c) for the "tree" dominated decay Bˉs0K+ρ\bar B_s^0\to K^+ \rho^- and the "color-suppressed-tree" decay Bˉs0π0K0\bar B_s^0\to \pi^0 K^{*0}, the big difference between the PQCD predictions for their branching ratios are induced by different topological structure and by interference effects among the decay amplitude AT,C{\cal A}_{T,C} and AP{\cal A}_P: constructive for the first decay but destructive for the second one, and (d) for \bar{B}_s^0 \to V(\eta, \etar) decays, the complex pattern of the PQCD predictions for their branching ratios can be understood by rather different topological structures and the interference effects between the decay amplitude \cala(V\eta_q) and \cala(V\eta_s) due to the \eta-\etar mixing.Comment: 18 pages, 2 figures, 3 tables. Some modifications of the text. Several new references are adde

    Time-like pion electromagnetic form factors in kT factorization with the next-to-leading-order twist-3 contribution

    Get PDF
    AbstractWe calculate the time-like pion electromagnetic form factor in the kT factorization formalism with the inclusion of the next-to-leading-order (NLO) corrections of the leading-twist and sub-leading-twist contributions. It's found that the total NLO correction can enhance (reduce) the magnitude (strong phase) of the leading order form factor by 20%–30% (<15°) in the considered invariant mass squared q2>5 GeV2, and the NLO twist-3 correction plays the key role to narrow the gap between the pQCD predictions and the measured values for the time-like pion electromagnetic form factor

    Titanium Trisulfide Monolayer: Theoretical Prediction of a New Direct-Gap Semiconductor with High and Anisotropic Carrier Mobility

    Get PDF
    A new two-dimensional (2D) layered material, namely, titanium trisulfide (TiS3) monolayer, is predicted to possess novel electronic properties. Ab initio calculations show that the perfect TiS3 monolayer is a direct-gap semiconductor with a bandgap of 1.02 eV, close to that of bulk silicon, and with high carrier mobility. More remarkably, the in-plane electron mobility of the 2D TiS3 is highly anisotropic, amounting to about 10,000 cm2 V−1 s−1 in the b direction, which is higher than that of the MoS2 monolayer, whereas the hole mobility is about two orders of magnitude lower. Furthermore, TiS3 possesses lower cleavage energy than graphite, suggesting easy exfoliation for TiS3. Both dynamical and thermal stability of the TiS3 monolayer is examined by phonon-spectrum calculation and Born–Oppenheimer molecular dynamics simulation. The desired electronic properties render the TiS3 monolayer a promising 2D atomic-layer material for applications in future nanoelectronics. Includes Supplemental Materials (Fig. S1
    corecore