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We calculate the time-like pion electromagnetic form factor in the kT factorization formalism with 
the inclusion of the next-to-leading-order (NLO) corrections of the leading-twist and sub-leading-twist 
contributions. It’s found that the total NLO correction can enhance (reduce) the magnitude (strong 
phase) of the leading order form factor by 20%–30% (< 15◦) in the considered invariant mass squared 
q2 > 5 GeV2, and the NLO twist-3 correction plays the key role to narrow the gap between the pQCD 
predictions and the measured values for the time-like pion electromagnetic form factor.
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1. Introduction

As a very important physical observable which may help us to 
understand the hadrons’ structure and the transition from the per-
turbative to the non-perturbative region, the pion meson electro-
magnetic (EM) form factor has been the hot subject of numerous 
experimental and theoretical investigations for a long time.

During past four decades, the pion EM form factors [1] have 
been measured frequently by many groups [2–8]. The space-like 
pion EM form factor was firstly measured by Harvard & Cornell 
collaboration in the range 0.15 ≤ Q 2 ≤ 10 GeV2 with the electro-
production processes in 1970s [2], and then measured by DESY 
collaboration at the fixed point (Q 2 = 0.35, 0.70 GeV2) in the sim-
ilar processes almost at the same time [3]. In the new century, 
this space-like form factor was measured separately by Jefferson 
Lab Fπ Collaboration in the region 0.60 ≤ Q 2 ≤ 1.60 and at the 
fixed point Q 2 = 2.45 GeV2 [4]. For the time-like pion EM form 
factor, Cyclotron Laboratory reported their result at the point q2 =
0.176 GeV2 in the electro-production process [5], then NOVOSI-
BIRSK collaboration and ORSAY collaboration measured this form 
factor independently in the region 0.64 ≤ q2 ≤ 1.40 GeV2 [6] and 
1.35 ≤ q2 ≤ 2.38 GeV2 [7] through the e+e− annihilation process 
respectively. Recently, CLEO Collaboration also reported their pre-
cision measurements of this form factor at the relatively large q2

(q2 = 9.6, 13.48 GeV2) [8]. A comprehensive summary of experi-
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mental measurements for the time-like pion EM form factor can 
be found in Ref. [9].

On the theory side, pion EM form factors also attracted much 
attentions. The space-like one was studied at different energy re-
gions in QCD by using the different approaches. For example, it 
was investigated in high and moderate energy region in Ref. [10]
and Refs. [11,12] respectively, while it’s asymptotic behavior at 
the extremely large q2 was studied in Ref. [13]. In Refs. [14–16], 
the space-like pion form factor was studied carefully in the per-
turbative QCD theory, and it was also studied in the sum rules 
formalism [17]. For the time-like pion EM form factor [18], it’s 
high q2 behavior was evaluated at q2 = M2

J/� , which was found 
to be two times larger than the space-like one [19]. The Sudakov 
effect for the time-like form factor was discussed in Refs. [20,21]
and the asymptotic behavior of the integration singularity for the 
time-like form factor is the same as that for the space-like one. The 
conformal symmetry was also used to analyze the time-like form 
factor [22] and it is shown explicitly that the time-like form factor, 
which was obtained by the analytic continuation of the space-
like one, agree well with the dispersion relation. What’s more, the 
light-cone QCD investigation [23,24] confirmed recently that the 
effects of the power suppressed sub-leading twist’ and the gen-
uine soft QCD correction’ contributions turn out to be dominant at 
low- and moderate-energies.

With removing the end-point singularities by the Sudakov fac-
tors [25,26], the kT factorization theorem [27] is successful to 
deal with the exclusive processes with a large momentum trans-
fer [28]. In the kT factorization theorem, the space-like pion EM 
form factor was re-examined with the inclusion of the Sudakov 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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suppression [29]. Three-parton contribution to pion EM form fac-
tor in kT factorization was also investigated in Refs. [30] and it’s 
found that such contribution is rather small in size and therefore 
can be dropped safely.

After completing the NLO calculations for the space-like pion 
EM form factor at leading twist (twist-2) [31], the authors also 
studied the NLO twist-2 time-like pion EM form factor [32] and 
found that the NLO twist-2 correction to the twist-2 leading or-
der (LO) magnitude (strong phase) is lower than 25% (10◦) at the 
large invariant mass squared q2 > 30 GeV2. In Refs. [33,34], the au-
thors calculated the sub-leading twist’s (twist-3) contribution from 
pion meson distribution amplitudes (DAs) to the exclusive B → π
transition form factors and the space-like pion EM form factor, and 
they found that this power-suppressed contribution is large in the 
low and moderate q2 regions. In this paper, therefore, we will eval-
uate the NLO twist-3 contribution to the time-like pion EM form 
factor with the calculation for the NLO correction to the space-like 
pion EM form factor at twist-3 level [34].

This paper is organized as follows. In Section 2, we give the LO 
analysis for the time-like pion EM form factor. In Section 3, the 
NLO twist-3 corrections to the time-like form factor will be calcu-
lated from the space-like one by analytical continuation. Section 4
contains the numerical analysis of the NLO effects, and the conclu-
sion will also be given in this section.

2. Leading order analysis

In this section we will present the LO factorization formula for 
the time-like pion EM form factor and evaluate the contributions 
from the two-parton twist-2 and twist-3 pion meson DAs. The LO 
quark diagram for the relative time-like and space-like pion EM 
form factor corresponding to the process γ � → ππ(πγ � → π) are 
illustrated in Fig. 1(a) and 1(b), respectively.

One should note that the kinetics for the time-like pion EM 
form factor are different from the space-like ones, because both 
two mesons are outgoing in Fig. 1(a), while one meson is incoming 
and the other is outgoing in Fig. 1(b). In the light-cone coordinates, 
the momenta p1 and p2 in Fig. 1(a) are parameterized as

p1 = (p+
1 ,0,0T), p2 = (0, p−

2 ,0T); p+
1 = p−

2 = Q√
2
, (1)

k1 = (x1 p+
1 ,0,k1T ), k2 = (0, x2 p−

2 ,k2T ),

q2 = Q 2 = (p1 + p2)
2, (2)

with q2 being the invariant mass squared of the intermediate vir-
tual photon, k1 (k2) is the momentum carried by the valence 
quark (anti-quark) of meson M1 (M2) with the momentum frac-
tion x1 (x2) denoting the strength of the quark (anti-quark) to form 
the corresponding meson. Then the time-like (space-like) pion EM 

Fig. 1. The LO diagrams for the time-like (a) and space-like (b) pion electromagnetic 
form factor, with • here representing the electromagnetic vertex.
form factor Gπ (Fπ ) can be specified through the following matrix 
elements [24]:

e(p1 − p2)μGπ (q2)

=< π±(p2)π
∓(p1) | J EM

μ (p1 + p2) | 0 >, (3)

e(p1 + p2)μFπ (Q 2)

=< π±(p2) | J EM
μ (p1 − p2) | π±(p1) >, (4)

where J EM
μ is the EM current. The space-like momentum transfers 

in Eq. (4) is Q 2 = −q2 = −(p1 − p2)
2, which is different from the 

time-like one as described in Eq. (2).
From Fig. 1(a) and Fig. 1(b), one can write down the LO time-

like and space-like hard kernels

H (0)
a (xi,kiT, Q 2) = −ieq32παsC F NC Q 2

(p2 + k1)2(k2 + k1)2
·
{

x1 p1μφA(x1)φ
A(x2)

− 2r2
0

[
(p2μ + x1 p1μ)φ P (x1)φ

P (x2)

− (p2μ − x1 p1μ)φT (x1)φ
P (x2)

]}
, (5)

H (0)

b (xi,kiT, Q 2) = ieq32παsC F NC Q 2

(p2 − k1)2(k2 − k1)2
·
{

x1 p1μφA(x1)φ
A(x2)

+ 2r2
0

[
(p2μ − x1 p1μ)φ P (x1)φ

P (x2)

− (p2μ + x1 p1μ)φT (x1)φ
P (x2)

]}
, (6)

where φA(x1) and φ P ,T (x1) (φA(x2) and φ P ,T (x2)) represent the 
twist-2 and twist-3 pion meson DAs for the corresponding meson 
with the momentum p1 (p2), the chiral parameter is defined as 
r2

0 = m2
0/Q 2 with the chiral mass m0 = 1.74 GeV. By comparing 

Eq. (5) with Eq. (6), we can find that the LO time-like hard kernel 
has the similar structure with the space-like one, the only differ-
ence is the direction of the valence quark momentum k1, which 
will flow into the internal propagators. Then we can obtain the LO 
time-like hard kernel from the space-like one by direct replace-
ment −k /1 → k /1 for the internal propagators, which implied that 
the time-like form factor can also be obtained from the space-like 
one by analytical continuation from −Q 2 to Q 2 in the invariant 
mass squared q2 space. This is the basic idea being used to calcu-
late the NLO time-like pion EM form factor in this paper.

The LO time-like and space-like pion EM form factor can be 
obtained by combining Eqs. (3), (5) and Eqs. (4), (6) respectively, 
and they are written as,

Q 2G(0)(xi, Q 2,kiT )

= 128π Q 4 · αs(μ)

(p2 + k1)2(k1 + k2)2

1∫
0

dx1dx2

∞∫
0

d2k1T

2π

d2k2T

2π

·
{

− x1φ
A(x1)φ

A(x2) + 2r2
0

[
(1 − x1)φ

P (x1)φ
P (x2)

+ (1 + x1)φ
T (x1)φ

P (x2)
]}

, (7)

Q 2 F (0)(xi, Q 2,kiT )

= 128π Q 4 · αs(μ)

(p2 − k1)2(k1 − k2)2

1∫
0

dx1dx2

∞∫
0

d2k1T

2π

d2k2T

2π

·
{

x1φ
A(x1)φ

A(x2) + 2r2
0

[
(1 − x1)φ

P (x1)φ
P (x2)

− (1 + x1)φ
P (x1)φ

T (x2)
]}

. (8)
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The relation φT (x) = ∂φA(x)/(6∂x) has been considered in the pro-
cess to derive out Eq. (7).

For the time-like case, the denominator in Eq. (7) is expanded 
as,

(p2 + k1)
2(k1 + k2)

2

=
(

x1 Q 2 − k2
1T + iε

)(
x1x2 Q 2− | k1T + k2T |2 +iε

)
, (9)

and then the internal gluon/quark may go on mass shell, which 
will generate an image part in the hard kernel according to the 
principle-value prescription:

1

k2
T − β − iε

= Pr

(
1

k2
T − β

)
+ iπ · δ(k2

T − β). (10)

But in the space-like case, no image part would appear because 
the internal gluon/quark can’t go on mass shell. The denominator 
in Eq. (6) is expanded as,

(p2 − k1)
2(k1 − k2)

2

= (x1 Q 2 + k2
1T )(x1x2 Q 2+ | k1T + k2T |2). (11)

Now we consider the end-point behaviors of the LO form fac-
tors. We here examine first the end-point behavior in Eqs. (7), (8)
by using the asymptotic pion meson DAs [34] in Eqs. (12) for the 
elaboration.

φA
π (x)= 6 fπ x(1− x), φ P

π (x)= fπ , φT
π (x)= fπ (1− 2x). (12)

Then the end-point behavior of the integrands in Eqs. (7), (8) can 
be expressed roughly as

Q 2G(0)(xi, Q 2,kiT )

∝
−9x1x1x2(1 − x1)(1 − x2) + r2

π (1 − x1 − x2
1)

(p2 + k1)2(k1 + k2)2
, (13)

Q 2 F (0)(xi, Q 2,kiT )

∝
9x1x1x2(1 − x1)(1 − x2) + r2

π x2
1

x1x1x2 Q 4
, (14)

where the first (second) term in Eqs. (13), (14) describes the 
contributions from the twist-2 (twist-3) DAs. In the expansions 
of Eq. (14), the transverse momentum contributions in the in-
ternal propagators were absorbed into the effective momentum 
fraction xi . From the expressions in Eqs. (7)–(14), one can see the 
following points:

(i) The twist-2 contribution to the LO pion EM form factor, no 
matter for the time-like case or the space-like one, has no 
end-point singularity because of the cancelation of them be-
tween the denominator and numerator. The twist-3 contri-
bution, however, will generate the end-point singularities, al-
though they are power-suppressed by r2

π in the large momen-
tum transfers region. The LO twist-3 space-like form factor is 
behaved as 1/x1, for example, the twist-3 DAs would give the 
dominate contribution in the small and intermediate momen-
tum transfers region.

(ii) Since the Sudakov factor from threshold resummation [26] can 
suppress effectively the end-point singularity from the twist-3 
contribution, a rough estimate shows that the major contribu-
tion to the LO space-like form factor in Eq. (14) comes from 
the region of x1 ∼ 0.1 and x2 ∼ 0.5. Then the twits-2 contri-
bution to the LO space-like form factor will become as large 
as that from twist-3 contribution at the point Q 2 ∼ 7.4 GeV2, 
which has been confirmed by the numerical result in Ref. [34].
(iii) The second term in Eq. (13) is proportional to 1 − x1 − x2
1, 

which is much larger than the second term in Eq. (14) since 
it is proportioned to x2

1 ∼ 10−2. The end-point singularity for 
the time-like form factor induced by the twist-3 DAs, con-
sequently, is much higher than that for the space-like one. 
The twist-3 contribution to the time-like form factor is then 
much larger than the twist-2 contribution in the low and 
moderate q2 region. Simple estimation shows that these two 
kinds of contributions may become similar in size in the high 
Q 2 ∼ 300 GeV2 region.

By making the Fourier transformation for function Q 2G(0)(xi,

Q 2, kiT ) in Eq. (7) from the transversal momentum space (kiT )

to the conjugate-parameter space (bi), we obtain the standard 
double-b convolution LO time-like pion EM form factor [24,32,35]:

Q 2G(0)
II =

1∫
0

dx1dx2

∞∫
0

b1db1b2db2128π Q 4 · αs(μ)

· exp[−S(xi;bi; Q ;μ)]
· {−x1φ

A(x1)φ
A(x2) + 2r2

0

[
(1 − x1)φ

P (x1)φ
P (x2)

+ (1 + x2)φ
T (x1)φ

P (x2)
] · St(xi)} · K0(i

√
x1x2 Q b2)

· [K0(
√

x1 Q b1)I0(
√

x1 Q b2)θ(b1 − b2) + (b1 ↔ b2)
]
,

(15)

where the Sudakov exponent S = S(x1, b2; MB ; μ) + S(x2, b2;
MB ; μ) is the kT resummation factor, the Sudakov factor St(xi) =
St(x1) · St(x2) refers to the threshold resummation factor, K0 and 
I0 are the Bessel functions:

K0(iz) = iπ

2
H (1)

0 (iz); H (1)
0 (iz) = H (1)

0 (z) = J0(z) + iN0(Z);
I0(z) = J0(z). (16)

Since the kT factorization theorem applies to processes domi-
nated by small x contribution, so the NLO correction to the space-
like pion EM form factor [31,34] has been calculated with the 
hierarchy x1 Q 2, x2 Q 2 
 x1x2 Q 2, k2

T for convenience. Since there 
is no end-point singularity for the LO pion form factor from the 
twist-2 DAs, we can ignore the transverse momenta for the inter-
nal quark propagator safely for the twist-2 contribution as elabo-
rated in Ref. [32], then the denominator for the first term in Eq. (7)
is reduced to

(p2 +k1)
2(k1 +k2)

2 = x1 Q 2(x1x2 Q 2− | k1T +k2T |2 +iε). (17)

The LO time-like pion EM form factor from the twist-2 DAs can be 
written in a single-b convolution formula as follows:

Q 2G(0)
T 2,I =

1∫
0

dx1dx2

∞∫
0

b1db1b2db2128π Q 4 · αs(μ)

· exp[−S(xi;bi; Q ;μ)]
·
{

− x1φ
A(x1)φ

A(x2)
}

· K0(i
√

x1x2 Q b2). (18)

In Ref. [32], the authors confirmed that the numerical results in 
the standard double-b convolution as in Eq. (15) are approxi-
mately equal to the values of the single-b convolution as shown 
in Eq. (18), which furthermore showed that the major source of 
the strong phase is the internal gluon propagator for the twist-2 
contribution.

The LO time-like form factor from the twist-3 DAs, however, 
has a high power end-point singularity, the single-b approximation 
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is therefore not valid for the twist-3 DAs’s contribution. So in the 
next section we have to calculate the NLO twist-3 hard kernel in 
time-like form factor by using the double-b convolution method.

3. NLO correction to the twist-3 time-like pion EM form factors

The LO analysis in the last section show that the time-like 
hard kernel can be obtained from the space-like one by the sim-
ple space transfer: −Q 2 → Q 2. Because of the Lorentz invariant 
QCD theory, it’s believed that this analytical continuation should 
be hold at NLO.

In kT factorization theorem, the NLO hard kernel for pion EM 
form factor is derived by taking the difference of the NLO (O(α2

s )) 
quark diagrams and the convolutions of the LO (O(αs)) hard kernel 
with the NLO (O(αs)) effective diagrams for meson wave func-
tions. For the space-like pion EM form factors as described explic-
itly in Refs. [31,34], the ultraviolet divergences are just absorbed 
into the renormalized coupling constant αs(μ) with the mass-
less pion meson, the infrared divergences in the soft region are 
canceled by themselves in the quark diagrams, and the infrared 
divergences in the collinear region for the quark diagrams can be 
absorbed into the high order non-perturbative meson wave func-
tions.

For the time-like form factor, the NLO twist-2 hard kernel has 
been calculated in Ref. [32] and then the only unknown NLO cor-
rection at present is the one from the twist-3 DAs. With the NLO 
twist-3 space-like hard kernels calculated in Ref. [34], we can ob-
tain the NLO twist-3 time-like hard kernel by the analytical con-
tinuation −Q 2 → Q 2. For this purpose, we firstly define two types 
of LO twist-3 time-like hard kernels H (0)

T 3,1 (H (0)
T 3,2) proportioned to 

the Lorentz structure p1μ (p2μ) from Eq. (5):

H (0)
T 3,1(xi,kiT, Q 2) = ieq32παsC F NC Q 2

(p2 + k1)2(k2 + k1)2

· 2r2
0x1 p1μ

[
φ P (x1)+φT (x1)

]
φ P (x2), (19)

H(0)
T 3,2(xi,kiT, Q 2) = ieq32παsC F NC Q 2

(p2 + k1)2(k2 + k1)2

· 2r2
0 p2μ

[
φ P (x1) − φT (x1)

]
φ P (x2). (20)

By substituting Q 2 + iε for the momentum transfers of the vir-
tual photon, and x1x2 Q 2 − (k1T + k1T )2 + iε(x1 Q 2 − k2

1T + iε) for 
the internal gluon (quark), we can obtain the NLO twist-3 hard 
kernels for the time-like π+π− production process from the NLO 
twist-3 space-like one [34]. The NLO twist-3 time-like hard kernels 
can then be written as the form of

H (1)
T 3,1(xi,kiT, Q 2,μ,μ f )

= hT 3,1(xi,kiT , Q ,μ,μ f ) · H (0)
T 3,1(xi,kiT, Q 2) (21)

H(1)
T 3,2(xi,kiT, Q 2,μ,μ f )

= hT 3,2(xi,kiT , Q ,μ,μ f ) · H (0)
T 3,2(xi,kiT, Q 2). (22)

By setting the renormalized and factorized scales both at the in-
ternal hard scale μ = μ f = t , and using the follow relations,

ln(−Q 2 − iε) = ln(Q 2) − iπ,

ln(k2
1T − x1 Q 2 + iε) = ln(k2

1T − x1 Q 2) + iπ
(k2
1T − x1 Q 2)

ln(k2
T − x1x2 Q 2 + iε)

= ln(k2
T − x1x2 Q 2) + iπ
(k2

T − x1x2 Q 2), (23)
the relevant correction functions hT 3,1, hT 3,2 in Eqs. (21), (22) can 
be written as,

hT 3,1(xi,kiT , Q , t)

= αsC F

4π

[
9

4
ln

(
t2

Q 2

)
− 53

16
ln δ′

12 − 23

16
ln x′

1 − 1

8
ln2 x2

− 9

8
ln x2 − 137π2

96
+ 337

64
+ iπ

5

2

]
, (24)

hT 3,2(xi,kiT , Q , t)

= αsC F

4π

[
9

4
ln

(
t2

Q 2

)
− 4 ln δ′

12 − 1

2
ln2 x′

1 + 2 ln x2

− 15π2

24
+ ln 2

4
+ 11

2
+ iπ

(
7

4
+ ln x′

1

)]
, (25)

where ln δ′
12 ≡ ln((k1T + k2T )2 − x1x2 Q 2 + iε) − ln Q 2 and ln x′

1 ≡
ln(k2

1T − x1 Q 2 + iε).
We can then obtain the NLO twist-3 time-like correction func-

tions hT 3,1, hT 3,2 in the parameter space bi by the Fourier trans-
formation from the transverse momentum space kiT to bi space. 
The correction functions in b space takes the form of

hT 3,1(xi,bi, Q , t)

= αsC F

4π

[
9

4
ln

(
t2

Q 2

)
− 53

32
ln

(
4x1x2

Q 2b2
2

)
− 23

32
ln

(
4x1

Q 2b2
1

)

− 1

8
ln2 x2 − 9

8
ln x2 − 137π2

96
+ 19

4
γE + 337

64
+ iπ

39

8

]
,

(26)

hT 3,2(xi,bi, Q , t)

= αsC F

4π

[
9

4
ln

(
t2

Q 2

)
− 2 ln

(
4x1x2

Q 2b2
2

)
− 1

8
ln2

(
4x1

Q 2b2
1

)

+
(

γE

2
+ 3

4
iπ

)
ln

(
4x1

Q 2b2
1

)
+ 2 ln x2 − π2

4
− γ 2

E

2
+ 4γE

+ ln 2

4
+ 11

2
+ iπ

(
15

4
− 3

2
γE

)]
, (27)

where γE is the Euler constant.
With the NLO twist-3 correction function in Eqs. (26), (27) and 

the NLO twist-2 correction function in Ref. [32], we can obtain the 
NLO time-like pion EM form factor in kT factorization formula as 
the form of

Q 2G(1)
II = 128π Q 4 · αs(μ) ·

1∫
0

dx1dx2

∞∫
0

b1db1b2db2

· exp[−S(xi;bi; Q ;μ)] ·
{

− x1φ
A(x1)φ

A(x2) · hT 2

+ 2r2
0

[(
φ P (x1) + φT (x1)

)
φ P (x2) · hT 3,2

+x1

(
φT (x1) − φ P (x1)

)
φ P (x2) · hT 3,1

]
· St(xi)

}
· K0(i

√
x1x2 Q b2)

· [K0(
√

x1 Q b1)I0(
√

x1 Q b2)θ(b1 − b2) + (b1 ↔ b2)
]
,

(28)

where the NLO twist-2 correction function hT 2 derived from sing-b 
formula is expressed as the following form [32],
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hT 2(xi,b2, Q , t) = αsC F

4π

{
− 3

4
ln

(
t2

Q 2

)
− 1

4
ln2

(
4x1x2

Q 2b2
2

)

− 17

4
ln2 x1 + 27

8
ln x1 ln x2

+
(

17

8
ln x1 + 23

16
+ γE + i

π

2

)
ln

(
4x1x2

Q 2b2
2

)

−
(

13

8
+ 17γE

4
− i

17π

8

)
ln x1 + 31

16
ln x2

− π2

2
+ (1 − 2γE)π + ln 2

2
+ 53

4
− 23γE

8

− γ 2
E + iπ

(
171

16
+ γE

)}
. (29)

4. Numerical results and discussions

In this section we present the numerical results for the time-
like pion EM form factor induced by the distribution amplitudes 
with different twists at LO and NLO level. Non-asymptotic pion 
meson DAs as given in Eq. (30) with the inclusion of the high or-
der effects are adopted in our numerical calculation.

φA
π (x) = 3 fπ√ x(1 − x)

[
1 + aπ

2 C
3
2
2 (u) + aπ

4 C
3
2
4 (u)

]
,

6

φ P
π (x) = fπ

2
√

6

[
1 +

(
30η3 − 5

2
ρ2

π

)
C

1
2
2 (u)

− 3

(
η3ω3 + 9

20
ρ2

π

(
1 + 6aπ

2

))
C

1
2
4 (u)

]
,

φT
π (x) = fπ

2
√

6
(1−2x)

[
1 + 6

(
5η3 − 1

2
η3ω3 − 7

20
ρ2

π − 3

5
ρ2

πaπ
2

)

·
(

1 − 10x + 10x2
)]

, (30)

where the Gegenbauer moments aπ
i , the parameters η3, ω3 and 

ρπ are adopted from Refs. [36–39]:

aπ
2 = 0.25, aπ

4 = −0.015, ρπ = mπ/m0,

η3 = 0.015, ω3 = −3.0, (31)

with fπ = 0.13 GeV, mπ = 0.13 GeV, m0 = 1.74 GeV.
The LO and NLO pQCD predictions for the magnitude and 

strong phase of the time-like pion EM form factor from twist-2 
and twist-3 DAs are illustrated in Fig. 2 and Fig. 3 respectively. 
By summing up the different twists’ contributions, the total pQCD 
prediction for these physical quantities are shown in Fig. 4. From 
Figs. 2, 3 and 4, one can see the following points:

(1) For the LO form factor induced by the twist-2 DAs, the single-b 
convolution formula is a good approximation for the region of 
q2 > 30 GeV2 because the single-b convolution result is close 
Fig. 2. The pQCD predictions for the magnitude and strong phase of the time-like pion EM form factors induced by the twist-2 DAs φA . The Rome symbol “II” (“I”) refers to 
the form factors calculated in double-b (single-b) convolution formula as described in Eq. (15) (Eq. (18)).

Fig. 3. The pQCD predictions for the magnitude and strong phase of the time-like pion EM form factors induced by the twist-3 DAs φP ,T . The Rome symbol “II” refers to the 
form factors calculated in double-b convolution formula as described in Eq. (15).
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Fig. 4. The pQCD predictions for the magnitude and strong phase of the time-like pion EM form factor as described in Eqs. (15), (28) at the LO and NLO level. As a comparison, 
those currently available measured values [6–9] for fixed q2 are also shown in Fig. 4(a).
to the standard double-b convolution result in this q2 region. 
Of course, this approximation can be understood by the fact 
that the internal gluon propagator carry almost all the strong 
phase for this twist-2 case with no end-point singularity.

(2) The NLO twist-2 correction to the magnitude (strong phase) 
of the LO twist-2’s contribution is smaller than 25% (10◦) in 
the region of q2 > 30 GeV2. The NLO twist-3 correction to the 
magnitude (strong phase) of the LO twist-3’s contribution is 
smaller than 35% (20◦) in the region of q2 > 5 GeV2.

(3) At the LO level, because of the high power singularity, the 
twist-3 contribution is much larger than the twist-2 part in 
our considered region of 1 < q2 < 49 GeV2. So the obvious 
NLO twist-3 correction can enhance the LO pQCD prediction 
and therefore improve the agreement with the data, especially 
in the region of q2 > 5 GeV2. The NLO correction with the 
inclusion of both twist-2 and twist-3 contributions can en-
hance (reduce) the magnitude (strong phase) of the LO one 
by 20%–30% (< 15◦) in the region of q2 > 5 GeV2. The NLO 
pQCD prediction for time-like form factor therefore become 
well consistent with the CLEO data in the region of 5 < q2 <

15 GeV2, as shown explicitly by the solid curve in Fig. 4(a).
(4) We also consider the second moment of the pion DAs with the 

recent NLO pQCD fitting [40] (a2 = 0.005) and the precise lat-
tice calculation (say a2 = 0.136) [41] in our pQCD calculation, 
and find that usage of these new second moments don’t leads 
to any large modifications to the pQCD predictions.

Our numerical result at LO is a little smaller than the one in 
Ref. [32], since we here used the different input DAs and the dif-
ferent choice of the QCD scale λQCD . In Ref. [32], λQCD is chosen 
at the fixed value 0.2 GeV. In this paper, however, the QCD scale 
is varying in the transition process according to the internal hard 
scale, and λQCD is numerically around 0.25 GeV here.

In this paper, we firstly gave a brief review for the LO time-like 
and space-like pion EM form factor evaluated in the kT factor-
ization theorem, and then calculated the NLO twist-3 correction 
to the LO time-like pion EM form factor by making the analytic 
continuation of the NLO twist-3 space-like correction for the cor-
responding space-like form factor. And finally we made the nu-
merical calculations for the time-like pion EM form factor with the 
inclusion of the NLO twist-2 and twist-3 corrections.

From the analytical analysis and the numerical results for the 
LO and NLO pQCD predictions for the time-like pion EM form fac-
tor, we found that:
(i) The LO twist-3 contribution is much larger than the twist-2 
contribution since the high power end-point singularity.

(ii) The NLO twist-2 correction to the LO twist-2 contribution for 
the magnitude (phase) is less than 25% (10◦) in the region of 
q2 > 30 GeV2. The NLO twist-3 correction to the LO twist-3 
contribution for the magnitude (phase) of the LO form factor 
is less than 35% (10◦) in the region of q2 > 5 GeV2.

(iii) The total NLO correction with the inclusion of both the twist-2 
and twist-3 contributions can enhance (reduce) the magni-
tude (phase) of the LO form factor by 20%–30% (< 15◦) in 
the region of q2 > 5 GeV2, and consequently the NLO pQCD 
prediction for the pion EM form factor under consideration 
become well consistent with the CLEO data.
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