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Abstract

In this paper, by employing the kT factorization theorem, we made the first calculation for the space-like 
scalar pion form factor Q2F(Q2) at the leading order (LO) and the next-to-leading order (NLO) level, 
and then found the time-like scalar pion form factor F ′ (1)

a,I by analytic continuation from the space-like 
one. From the analytical evaluations and the numerical results, we found the following points: (a) the NLO 
correction to the space-like scalar pion form factor has an opposite sign with the LO one but is very small 
in magnitude, can produce at most 10% decrease to the LO result in the considered Q2 region; (b) the NLO 
time-like scalar pion form factor F ′ (1)

a,I describes the O(α2
s ) contribution to the factorizable annihilation 

diagrams of the considered B → ππ decays, i.e. the NLO annihilation correction; (c) the NLO part of the 
form factor F ′ (1)

a,I is very small in size, and is almost independent of the variation of cutoff scale μ0, but 
this form factor has a large strong phase around −55◦ and may play an important role in producing large 
CP violation for B → ππ decays; and (d) for B0 → π+π− and π0π0 decays, the newly known NLO 
annihilation correction can produce only a very small enhancement to their branching ratios, less than 3%
in magnitude, and therefore we could not interpret the well-known ππ -puzzle by the inclusion of this NLO 
correction to the factorizable annihilation diagrams.
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1. Introduction

As an important application of the kT factorization theorem [1–7], the perturbative QCD 
(pQCD) factorization approach [8–12] has been widely used to deal with various B/Bs meson 
decays for example in Refs. [13–17]. One advantage of the pQCD factorization approach is that 
the annihilation diagrams in the heavy-to-light decays are calculable [18]. In pQCD approach, 
the annihilation diagrams can provide a large strong phase which is essential to generate the large 
CP violation for some B/Bs meson decay channels.

In recent years, the kT factorization theorem is greatly improved after intensive studies by 
many authors. By using the universal gauge invariant wave functions with the inclusion of high 
order contributions [19–21], the next-to-leading order (NLO) corrections to the form factors for 
some transition processes have been calculated [22–26] during the past decade.

1. The pion form factors in πγ � → γ transition were calculated in Ref. [22]. The authors found 
that the NLO correction is only ∼5% of the leading order (LO) one when the factorization 
scale is set to be equal to the momentum transfer.

2. The pion electromagnetic form factors in πγ � → π transition were calculated in
Refs. [23,25]. The total NLO contribution can provide a roughly ∼20% enhancement to 
the LO contribution in the considered ranges of the momentum transfer Q2;

3. The B → π transition form factors involved in the semi-leptonic decay B → πlν were 
calculated in Refs. [24,26]. The NLO contribution from twist-2 part of the wave function 
can provide ∼30% correction to the LO order one [24], but it is largely canceled by the NLO 
twist-3 contribution [26], and finally result in a net ∼8% enhancement to the LO result.

4. In Ref. [27], the combined analysis of the space-like and time-like electromagnetic pion form 
factors has been done in the light-cone pQCD, with the inclusion of the non-perturbative 
“soft” QCD and the twist-3 corrections.

5. The NLO corrections to the time-like pion transition form factor and the electromagnetic 
pion form factors have been calculated in Ref. [28], where the NLO twist-2 correction to the 
magnitude (phase) is found to be smaller than 30% (30◦) for the time-like pion transition 
form factors, and lower than 25% (10◦) for the time-like electromagnetic form factors at the 
large invariant mass squared Q2 > 30 GeV2.

One should note that the vertices for all above mentioned transitions and decay processes involve 
the vector currents only. The NLO corrections to the form factors with a scalar vertex, however, 
have not been evaluated up to now.

As is well known, the B meson physics is an wonderful place to test the standard model (SM) 
and to search for the signal of the new physics (NP) beyond the SM. For the two body charmless 
hadronic B/Bs → h1h2 decays (here hi refers to the light pseudo-scalar or vector mesons), such 
as B± → π±π0 and B0 → π+π− decays, the major contribution come from the factorizable 
emission diagrams, in which the space-like form factors with the vector current are involved. 
But for the color-suppressed B0 → π0π0 decay, along with a large cancellation between the 
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emission diagrams, the contribution from the annihilation diagrams play an important role: the 
corresponding amplitude is proportional to the complex time-like scalar pion form factor.

In the framework of the pQCD factorization approach, the calculations for the main part of 
the NLO contributions from various sources have been done during the past decade for example 
in Refs. [13,24,26,28], the still missing NLO part in the pQCD approach includes the O(α2

s )

contributions from the hard spectator diagrams and annihilation diagrams. In this paper, we will 
make the first calculation for the scalar pion form factors up to NLO in the kT factorization theo-
rem, which has a direct relation with the evaluation of NLO contributions from those annihilation 
diagrams of B/Bs → h1h2 decays.

For this purpose, we firstly give a brief review for the LO space-like and time-like scalar 
pion form factors. Secondly, we will calculate the NLO corrections to the space-like scalar pion 
form factor, in which the momentum transfer squared is q2 = −Q2 < 0. Thirdly, by analytic 
continuation from q2 = −Q2 < 0 to q2 = Q2 > 0, we will obtain the NLO correction to the 
time-like scalar pion form factors from the one for the space-like scalar pion form factor. We 
finally evaluate the relevant annihilation diagrams, and to check the effects on the branching 
ratios of B → ππ induced by the inclusion of the newly found NLO correction to the time-like 
scalar pion form factors.

By using the universal NLO pion meson wave functions (twist-2 and twist-3 part) as defined in 
Refs. [18–21], we will make the convolutions of the LO hard kernel and the NLO wave functions, 
evaluate the quark level diagrams for the NLO corrections to the LO scalar transition process 
π → π , and finally obtain an infrared (IR) finite NLO hard kernel by making the difference of 
these two parts. All the IR singularities, such as the soft divergences generated from exchanging 
a massless gluon between two on-shell external quark lines and/or the collinear divergences 
generated from emitting a massless gluon from a light paralleled external quark line, are regulated 
by the off-shell transverse momentum kiT.

We will verify that all the IR divergences obtained from the NLO calculations can be absorbed 
into the NLO wave functions completely as described in Refs. [23,25]. The analytic continuations 
of the NLO correction to the space-like scalar pion form factor to the one on the time-like scalar 
pion form factor is also nontrivial. When we make the appropriate choice for the renormalization 
scale μ and the factorization scale μf , say setting them as the internal hard scale t as postulated 
in Refs. [23,25,28], we find that the NLO corrections on both the space-like and the time-like 
scalar form factors are indeed under control naturally.

This paper is organized as follows. In Section 2, we give a brief review about the LO space-
like and time-like scalar pion form factors and show the analytic continuation relation between 
them. In Section 3, we calculate the NLO correction to the space-like scalar pion form factor and 
present the numerical results. In this section, the O(α2

s ) QCD quark diagrams, as well as the con-
volutions between LO hard kernel and NLO wave functions, will be calculated step by step, and 
then obtain the kT-dependent NLO hard kernel by making the difference between the two parts. 
Section 4 contains the analytic continuation of the scalar pion form factor from the space-like 
domain q2 = −Q2 < 0 to the time-like domain q2 = Q2 > 0. We will calculate the branching 
ratios for B → ππ decays, and to check if the “ππ”-puzzle could be understood by the inclusion 
of the newly known NLO contribution to the time-like scalar pion form factor. Section 5 finally 
contains the conclusions.
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Fig. 1. The LO quark diagrams for the space-like scalar pion form factors for transition π → π , with the symbol •
representing the insertion of the scalar interaction vertex.

Fig. 2. The LO factorizable annihilation diagrams for B → ππ decays, in which the time-like scalar pion form factors 
are involved. The symbol • here represent the effective weak decay vertex.

2. Leading order analysis

We first give a brief review about the LO space-like and time-like scalar pion form factors in 
the framework of the kT factorization. For the space-like form factor at leading order, the relevant 
Feynman diagrams are illustrated in Fig. 1, where the symbol • representing the insertion of the 
scalar interaction vertex. The momentum transfer squared is

q2 = (p2 − p3)
2 = −2p2 · p3 ≡ −Q2, with Q2 > 0, (1)

where p2 and p3 are the momentum carried by the initial and final state meson

p2 = (p+
2 ,0,0T), p3 = (0,p−

3 ,0T). (2)

While the momentum k2 and k3 carried by the anti-quark in the initial and final state mesons can 
be written as

k2 = (x2p
+
2 ,0,k1T), k3 = (0, x3p

−
3 ,k2T), (3)

where x2 and x3 are the momentum fractions of the anti-quark.
For the time-like case as shown in Fig. 2, the momentum of the initial state B meson are set 

as

p1 = (p+
1 ,p−

1 ,0T), (4)

with the light anti-quark inside the B meson carrying the momentum k1 = (x1p
+
1 , 0, k1T). The 

final state mesons M2 and M3, produced from the B meson decay, have the momentum

p2 = (p+,0,0T), p3 = (0,p−,0T), (5)
2 3
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and the momentum carried by their partons are defined as k2 = (x2p
+
2 , 0, k2T) and k3 =

(0, x3p
−
3 , k3T) as shown in Fig. 2 explicitly. But the momentum transfer squared in this pro-

cess is q2 = (p2 + p3)
2 = M2

B > 0 with MB being the B meson mass.
Besides the two Feynman diagrams as given in Fig. 1, in fact, there exist other two Feynman 

diagrams with the vertex located in the lower anti-parton lines, which also contribute to the 
space-like scalar pion form factor at the leading order. But we here just want to evaluate the 
NLO corrections to the time-like scalar pion form factors, which should contribute through the 
annihilation diagrams of the B → M2M3 decays, as illustrated in Fig. 2. For this purpose, only 
the two Feynman diagrams as shown in Fig. 1 should be calculated firstly and then we can 
find the time-like scalar pion form factors from the space-like ones by making the analytical 
continuations. So, we here only consider the two diagrams as given in Fig. 1.

2.1. Leading order space-like scalar pion form factor

Because the vertex in Fig. 1 are scalar in nature, the scalar pion form factors at LO level can 
be written directly from the hard kernels of the sub-diagrams in Fig. 1. The following hierarchy 
is postulated in the small-x region in our analytic calculation, as in Refs. [23,25]:

Q2 � x1Q
2 ∼ x2Q

2 � x1x2Q
2 � k2

1T ∼ k2
2T. (6)

We use the Fierz identity in Eq. (7) and the SU(3)c group identity in Eq. (8) to factorize the 
fermion flow and the color flow. The identity matrix I in the Fierz identity is a 4-dimension 
matrix and (i, j, l, k) are the Lorentz index, while the identity matrix I in the SU(3)C group is a 
3-dimension matrix and (i, j, l, k) are color index.

Iij Ilk = 1

4
IikIlj + 1

4
(γ5)ik(γ5)lj + 1

4
(γ α)ik(γ

α)lj

+ 1

4
(γ5γ

α)ik(γαγ5)lj + 1

8
(σαβγ5)ik(σαβγ5)lj , (7)

Iij Ilk = 1

Nc

Ilj Iik + 2(T c)lj (T
c)ik. (8)

Because the weak vertex in Fig. 1(a) is proportional to identity I in the Lorentz space, then we 
can obtain the hard kernel H(0)

a by sandwiching Fig. 1(a) with the following two sets of structures 
of pion wave functions:(

/p2γ5

4Nc

,
γ5

4Nc

or
γ5(/n−/n+)

4Nc

)
;

(
γ5

4Nc

or
γ5(/n−/n+)

4Nc

,
γ5/p3

4Nc

)
, (9)

where n+ = (1, 0, 0T) and n− = (0, 1, 0T) denote the unit vector along with the positive and 
negative z-axis direction. Of course, one can write down H(0)

a directly by using the initial and 
the final pion meson wave functions [10,29–33] as given explicitly in Eqs. (10), (11) with the 
chiral mass of pion m0π = 1.74 GeV:

	π(p2, x2) = 1√
6

{
/p2γ5φ

A
π (x2) + m0πγ5

[
φP

π (x2) − (/n−/n+ − 1)φT
π (x2)

]}
, (10)

	π(p3, x3) = 1√
6

{
γ5/p3φ

A
π (x3) + γ5m0π

[
φP

π (x3) − (/n−/n+ − 1)φT
π (x3)

]}
. (11)

Then the LO contributions to the hard kernel from Fig. 1(a) can be written as
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Fig. 3. The LO pQCD prediction for the space-like scalar pion form factor Q2F(Q2) from Fig. 1(a). For more details 
see the text.

H(0)
a (x2, x3,Q

2) = 8παsCF m0πQ2

(p3 − k2)2(k2 − k3)2

·
{

2φA
π (x2)φ

P
π (x3) + x2

[
φP

π (x2) − φT
π (x2)

]
φA

π (x3)
}
, (12)

where αs is the strong coupling constant, CF = 4/3 is the color factor. It is not difficult to find 
the end-point behavior of the LO hard kernel for Fig. 1(a):

H(0)
a (x2, x3,Q

2)|end-point → (16παsCF m0πQ2) ·
{ (1 − x2)

x2x3
+ (1 − x3)

}
, (13)

where the first and second term describes the end-point behavior of the corresponding term in 
Eq. (12). It is easy to verify that the second term in Eq. (13) is strongly suppressed by a factor of 
x2x3(1 − x3)/(1 − x2) relative to the first term. The first term proportioned to φA(x3)φ

P (x2) in 
Eq. (12), consequently, will provide the dominate contribution when compared with the second 
term in Eq. (12). The numerical results as illustrated by the curves in Fig. 3 confirmed this point 
directly.

By using the LO hard kernel H(0)
a in Eq. (12), one can find the corresponding space-like scalar 

pion form factor at the LO level in the form of

Q2F(Q2)|LO = 8πm0πCF Q4
∫

dx2dx3

∫
b2db2b3db3

·
{

2φA
π (x2)φ

P
π (x3)St (x3) + x2

[
φP

π (x2) − φT
π (x2)

]
φA

π (x3)
}

· αs(t) · e−2Sπ (t) · h(x2, x3, b2, b3), (14)

where the Sudakov factor Sπ(t) and the threshold resummation function St(x) are the same ones 
as being used in Refs. [10,25]. In numerical calculation we choose c = 0.4 in the function St (x). 
The hard function h(x2, x3, b2, b3) in Eq. (14) can be written as the following form

h(x2, x3, b2, b3) = K0
(√

x2x3Qb2
)

·
[
θ(b2 − b3)I0

(√
x3Qb3

)
K0

(√
x3Qb2

) + (b2 ↔ b3)
]
, (15)

where the function K0 and I0 are the modified Bessel function. Following Refs. [23,25], we here 
also choose μ = μf = t in the numerical calculations:
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μ = μf = t = max
(√

x2Q,
√

x3Q,1/b2,1/b3
)
. (16)

In the calculations, we can consider the sub-diagram Fig. 1(a) only, since the contributions 
from Fig. 1(b) can be obtained by simple kinematic replacements of x2 ↔ x3 for the results from
Fig. 1(a) as we have argued in Ref. [25]. The direct analytical evaluations for Fig. 1(b) can verify 
this exchange symmetry. After making the analytic calculations we found the expressions for the 
LO hard kernel H(0)

b (x1, x2, Q2) and its end-point behavior:

H
(0)
b (x2, x3,Q

2) = 8παsCF m0πQ2

(p2 − k3)2(k3 − k2)2

·
{

2φA
π (x3)φ

P
π (x2) + x3

[
φP

π (x3) − φT
π (x3)

]
φA

π (x2)
}
, (17)

H
(0)
b (x2, x3,Q

2)|end-point → (16παsCF m0πQ2) ·
{ (1 − x3)

x2x3
+ (1 − x2)

}
. (18)

In Fig. 3, we show the Q2-dependence of the LO space-like scalar pion form factor Q2F(Q2)

for Fig. 1(a), in order to support our previous theoretical arguments for the dominance of the 
contribution from the first term of the hard kernel H(0)

a (x2, x3, Q2) as defined in Eq. (12). In 
Fig. 3, the contributions from the two different terms as given in Eq. (12) are plotted explicitly: 
the upper dot-dashed curve with the label “LO1” shows the contribution from the first term 
proportional to 2φP

π (x2)φ
A
π (x3) in the LO hard kernel H(0)

a , while the lower doted curve with 
the label “LO2” shows the contribution from the second term in H(0)

a , and finally the solid line 
denotes the total LO contribution. One can see from the curves in Fig. 3 that the contribution 
to the LO space-like scalar pion form factor Q2F(Q2) from the first term of H(0)

a is indeed 
dominant absolutely, larger than 90% of the total LO result in the whole considered range of Q2.

In the numerical calculations, we integrate for the partons’ momentum fractions (x2, x3) over 
the range of xi = [0, 1], and find that the main contribution comes from the small x2, x3 ∼ 0.1
region [12], being consistent with the hierarchy postulated in Eq. (6) for our analytic calculation. 
After the numerical integration, we obtained the LO theoretical predictions as shown in Fig. 3 by 
using the ordinary full pion distribution amplitudes (DAs) as given in Refs. [31,32]:

φA
π (x) = 3fπ√

6
x(1 − x)

[
1 + aπ

2 C
3
2
2 (u) + aπ

4 C
3
2
4 (u)

]
,

φP
π (x) = fπ

2
√

6

[
1 +

(
30η3 − 5

2
ρ2

π

)
C

1
2
2 (u) − 3

(
η3ω3 + 9

20
ρ2

π

(
1 + 6aπ

2

))
C

1
2
4 (u)

]
,

φT
π (x) = fπ

2
√

6
(1 − 2x)

[
1 + 6

(
5η3 − 1

2
η3ω3 − 7

20
ρ2

π − 3

5
ρ2

πaπ
2

)(
1 − 10x + 10x2

)]
,

(19)

where the pion decay constant fπ = 0.13 GeV, the Gegenbauer moments aπ
i , the parameters 

η3, ω3 and ρπ are adapted from Refs. [31,32]:

aπ
2 = 0.25 ± 0.015, aπ

4 = −0.015, ρπ = mπ/m0
π , η3 = 0.015, ω3 = −3.0. (20)

The relevant Gegenbauer polynomials C1/2
2,4 (2x − 1) and C3/2

2,4 (2x − 1) can be found easily in 
Refs. [31,32].

From the expressions of the LO hard kernels H(0)
a , H(0)

b as given in Eqs. (12), (17) and the 
LO pQCD predictions for Q2F(Q2) as illustrated in Fig. 3, one can see the following points:
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1. The LO hard kernel H(0) only receive the contributions from the two cross productions 
of the DAs with different twists for the initial and final pion wave function, because of the 
nature of the scalar current in the vertex of Fig. 1. Take H(0)

a as an example, the contributions 
do come from the two terms proportional to φA(x2)φ

P (x3) and [φP (x2) − φT (x2)]φA(x3)

respectively, as listed in Eq. (12).
2. From Fig. 3 one can see easily that the first term in the LO hard kernel H(0)

a in Eq. (12)
provides the absolutely dominant contribution (larger than 90%) to the form factor Q2F(Q2)

in the whole region of 1 < Q2 < 30 GeV2, while the contribution from the second term of 
H

(0)
a in Eq. (12) is very small and can be neglected safely. This fact does support our previous 

argument from the analysis for the end-point behavior of the two terms in Eqs. (13), (18).
3. Since the LO contribution from the second term of H(0)

a in Eq. (12) is already very small, 
it is reasonable for us to consider the NLO contribution to the space-like scalar pion form 
factor from the dominant first term in H(0)

a only in next section, which would simplify our 
calculations significantly.

2.2. Leading order time-like scalar pion form factor

The weak decay vertices in the factorizable annihilation diagrams for B decays, as shown in 
Fig. 2, would generate three kinds of contributions: (V −A) ⊗ (V −A), (V −A) ⊗ (V +A) and 
(S − P) ⊗ (S + P) current contribution. We here abbreviate these contributions as LL, LR and 
SP current respectively. The SP current comes from the Fierz transformation of the LR current if 
the light anti-quarks in B meson and one of the final light mesons are identical. In this paper, we 
will just consider the SP current proportioned to the time-like scalar pion form factors, because 
the LO hard kernels with the LL and LR currents are canceled each other completely in Fig. 2(a) 
and Fig. 2(b) when the two final states have the same wave functions, as described in detail in 
Ref. [9].

Using the definition of the annihilation matrix element < 0|(q̄b)S−P |B(p1) >= ifBMB , the 
LO hard kernel for Fig. 2(a) and 2(b) can be written in the following form:

H ′ (0)
a (x2, k2T;x3, k3T;M2

B) = −8παsCF m0
πM2

B(−2ifBMB)

[(p1 − k3)2 + iε]](k3 − p3 − k2)2 + iε]
·
{
(1 − x3)φ

A
π (x2)

[
φP

π (x3) + φT
π (x3)

]
+ 2φP

π (x2)φ
A
π (x3)

}
, (21)

H
′ (0)
b (x2, k2T;x3, k3T;M2

B) = −8παsCF m0
πM2

B(−2ifBMB)

[(k3 − p3 − k2)2 + iε][(p3 + k2)2 + iε]
·
{
x2

[
φP

π (x2) − φT
π (x2)

]
φA

π (x3) + 2φA
π (x2)φ

P
π (x3)

}
. (22)

It’s easy to confirm that the LO hard amplitude H ′ (0)
b can be obtained from H ′ (0)

a by simple 
kinetic replacements x3 ↔ (1 −x2), we therefore could deal with Fig. 2(a) in our calculation and 
get the one for Fig. 2(b) by proper kinetic replacements x3 ↔ (1 − x2).

Furthermore, the contribution to H ′ (0)
a mainly comes from the small (1 − x3) ∼ 0.1 re-

gion due to the threshold suppression effects [12], while the contribution proportional to term 
φA

π (x2) 
[
φP

π (x3) + φT
π (x3

]
in H ′ (0)

a is also suppressed by the factor x2(1 − x2)(1 − x3)/x3. It is 

therefore reasonable for us to consider the dominant H ′ (0)
a,32 proportioned to term φP

π (x2)φ
A
π (x3)

only when we calculate the hard amplitude H ′ (0)
a :
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H
′ (0)
a,32(x2, k2T;x3, k3T;M2

B) ≡ −16παsCF m0
πM2

B(−2ifBMB)

[(p1 − k3)2 + iε][(k3 − p3 − k2)2 + iε]φ
P
π (x2)φ

A
π (x3).

(23)

For the Fourier transformation of Eq. (21) from the transverse-momentum space (k2T, k3T) to 
the impact-parameter space (b2, b3), we have two different choices: One is the double-b convo-
lution, another is the single-b convolution.

If one write the two factors in the denominator of the hard kernel in Eqs. (21), (23) in the form 
of

(p1 − k3)
2 + iε = M2

B(1 − x3) − k2
3T + iε;

(k3 − p3 − k2)
2 + iε = M2

Bx2(1 − x3) − (k3T − k2T)2 + iε, (24)

one could obtain, after making the integration of the hard kernel in Eq. (21) over the whole mo-
mentum space, the complex time-like amplitudes which may provide a strong phase to generate 
the large CP violation observed for example in B → π+π− decay [9]. The imaginary part of the 
resulted time-like amplitude is produced according to the principle-value prescription in Eq. (25)
when one of the internal particle propagators goes on mass-shell:

1

xM2
B − k2

T ± iε
= Pr

(
1

xM2
B − k2

T

)
∓ iπδ(xM2

B − k2
T). (25)

Then the LO time-like scalar pion form factor for Fig. 2(a) can be obtained by the Fourier 
transformation of Eq. (21) from the space (k2T, k3T) to the space (b2, b3), and this double-b 
convolution can then be written in the form of

F
′ (0)
a,II =

1∫
0

dx2dx3

∞∫
0

db2db3 16πCF M2
Bmπ

0 · αs(μ)

· exp [−SII(x2, b2;1 − x3, b3;MB;μ)]

·
{
(1 − x3)φ

A
π (x2)

[
φP

π (x3) + φT
π (x3)

]
+ 2φP

π (x2)φ
A
π (x3) · St (x2)

}
· K0(i

√
(1 − x3)x2MBb3)

·
[
K0(

√
x2MBb2)I0(

√
x2MBb3)θ(b2 − b3) + (b2 ↔ b3)

]
. (26)

If one take the hierarchy as described in Eq. (6) into account, he can also drop the transverse 
momentum of the internal quark but keep the transverse momentum of the gluon propagator, i.e. 
write the two factors of the denominator in Eqs. (21), (23) in the form of

(p1 − k3)
2 + iε ∼ M2

B(1 − x3) + iε,

(k3 − p3 − k2)
2 + iε = M2

Bx2(1 − x3) − (k3T − k2T)2 + iε. (27)

One can then obtain the single-b convolution LO time-like scalar pion form factor for Fig. 2(a) 
by Fourier transformation of Eq. (21) from the transverse-momentum space k3T to the impact-
parameter space b3 with only one b parameter integration. This single-b convolution form factor 
is in the form of
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Fig. 4. The μ0-dependence of the LO time-like scalar pion form factor F ′ (0)
a,I

and F ′ (0)
a,II on the variations of the cutoff 

scale μ0 in the range of 0.8 ≤ μ0 ≤ 1.5 GeV. (a) the real part Re[F ′ (0)
a ], and (b) the imaginary part Im[F ′ (0)

a ]. For more 
details see text.

F
′ (0)
a,I =

1∫
0

dx2dx3

∞∫
0

db3
−16πCF mπ

0

(1 − x3)
· αs(μ) · exp [−SI(x2, b2;1 − x3, b3;MB;μ)]

·
{
(1 − x3)φ

A
π (x2)

[
φP

π (x3) + φT
π (x3)

]
+ 2φP

π (x2)φ
A
π (x3) · St (x2)

}
· K0(i

√
(1 − x3)x2MBb3). (28)

The Bessel functions K0, I0 and the Sudakov exponents SI,II in Eqs. (26), (28) are of the form

K0(iz) = iπ

2
H

(1)
0 (iz) = iπ

2
[I0(z) + iN0(z)] , (29)

SI = SII = S(x2, b2;MB;μ) + S(1 − x3, b3;MB;μ). (30)

In the framework of the pQCD factorization approach, we usually choose the lower cutoff 
scale μ0 = 1 GeV for the hard scale t in the running of the Wilson coefficients Ci(t). In the 
numerical integrations we will fix the values Ci(t) at Ci(μ0) whenever the scale t runs below the 
cutoff scale μ0 = 1 GeV.

In Fig. 4, we plot the pQCD predictions for the values and μ0-dependence of the real and 
imaginary part of the LO time-like scalar pion form factor F ′ (0)

a,I and F ′ (0)
a,II , obtained by using the 

pion DAs as given in Eq. (19) and the single-b and double-b convolution respectively. Fig. 4(a) 
and 4(b) shows the real and the imaginary part of the form factor, respectively. The dash, dot–dash 
curve represents the contribution from the 1st, 2nd term in Eq. (26) respectively; the solid (dots) 
line shows the total LO form factor as described in Eq. (26) (Eq. (28)), when making the double-b 
(single-b) convolution. From the numerical results as shown in Fig. 4, we find the following 
points:

1. The second term proportional to φP
π (x2)φ

A
π (x3) in Eq. (26) provides the dominant contri-

bution to both the real and imaginary part of the time-like scalar pion form factor, which 
support our analysis in the paragraph before Eq. (23) and further imply that it’s reasonable 
to consider the NLO contribution to this dominant term only when we evaluate the NLO 
corrections to the LO results.
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2. The real (imaginary) part of the form factor obtained from the single-b convolution is a bit 
larger (smaller) than that obtained from the double-b convolution method. But one can see 
from Fig. 4 that the difference between the pQCD predictions obtained by using the single-b 
or double-b convolution method is very small in deed. Such similarity can be understood by 
the fact that the internal gluon propagator provide the major contribution to the imaginary 
part and the strong phase in the factorizable annihilation diagrams.

3. It is easy to see from Fig. 4 that the pQCD predictions for the LO time-like scalar pion form 
factor F ′ (0)

a,I and F ′ (0)
a,II do have a very weak dependence on the value of μ0, this is indeed 

what we expect.

By comparing the hard kernels as given in Eqs. (12), (21), it is easy to find that one can 
obtain the time-like hard kernel H ′ (0)

a from the space-like one H(0)
a by simple replacements of 

x2 → 1 − x3 and the analytic continuation Q2 → −M2
B . Such connections are also valid for 

H
′ (0)
b and H(0)

b . So the NLO contribution to the LO time-like scalar hard kernel can also be 
obtained from the NLO correction to the LO space-like result by the same kinds of replacements 
and analytical continuations, which will be presented in the next section.

3. NLO correction for the space-like scalar pion form factor

In this section we will calculate the O(α2
s ) quark level diagrams as well as the convolutions 

of the effective diagrams for the O(αs) wave functions and the LO (O(αs)) hard kernel in the 
’t Hooft–Feynman gauge, and try to find the IR finite NLO corrections to the space-like scalar 
pion form factor in the kT factorization theorem. From the discussions in last section, we get to 
know that it is reasonable for us to calculate the NLO corrections to H(0)

a,1 only, which is the first 

term of the LO hard kernel H(0)
a (x2, x3, Q2) in Eq. (12), i.e.,

H
(0)
a,1(x2, k2T;x3, k3T;Q2) = 16παsCF m0πQ2

(p3 − k2)2(k2 − k3)2
φA

π (x2)φ
P
π (x3). (31)

Under the hierarchy as shown in Eq. (6), only those terms which don’t vanish in the limits of 
xi → 0 and kiT → 0 should be kept.

3.1. NLO contributions of the QCD quark diagrams

We first calculate the NLO (O(α2
s )) corrections to Fig. 1(a) in the kT factorization theorem in 

this subsection. These NLO corrections include the self-energy diagrams, the vertex diagrams, 
the box and pentagon diagrams, as illustrated in Figs. 5–7 respectively. We will use the dimen-
sional reduction scheme [34] to extract the ultraviolet (UV) divergences, and use the transverse 
momentum for the external light quarks in Eq. (32) to regulate the IR divergences in loops. Fol-
lowing the method used in Refs. [23,25] we make the same definitions for δ2, δ3 and δ23:

δ2 = k2
2T

Q2
, δ3 = k2

3T

Q2
, δ23 = −(k2 − k3)

2

Q2
. (32)

Following the standard procedure we calculate the one loop self-energy Feynman diagrams as 
shown in Fig. 5 and find the following NLO self-energy corrections:

G
(1)
5a = −αsCF

[
1 + ln

4πμ2

2 γE
+ 2

]
H(0),
8π ε δ2Q e
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Fig. 5. The self-energy corrections to Fig. 1(a).

G
(1)
5b = −αsCF

8π

[
1

ε
+ ln

4πμ2

δ2Q2eγE
+ 2

]
H(0),

G
(1)
5c = −αsCF

8π

[
1

ε
+ ln

4πμ2

δ3Q2eγE
+ 2

]
H(0),

G
(1)
5d = −αsCF

8π

[
1

ε
+ ln

4πμ2

δ3Q2eγE
+ 2

]
H(0),

G
(1)
5e = −αsCF

4π

[
1

ε
+ ln

4πμ2

x2Q2eγE
+ 2

]
H(0),

G
(1)
5f +5g+5h+5i = αs

4π

[(
5 − 2

3
Nf

)(
1

ε
+ ln

4πμ2

δ23Q2eγE

)]
H(0), (33)

where 1/ε represents the UV pole term, μ is the renormalization scale,γE is the Euler constant, 
Nf is the number of the active quarks flavors, and H(0) = H

(0)
a,1(x2, k2T; x3, k3T; Q2) has been 

defined in Eq. (31). For the sake of simplicity, we will use the abbreviation H(0) instead of the 
term H(0)

a,1(x2, k2T; x3, k3T; Q2) to denote the LO hard kernel throughout the text unless otherwise 
stated explicitly. Figs. 5(f, g, h, i) denote the self-energy corrections to the exchanged gluon 
itself.

It’s easy to find that all these self-energy corrections are equal to the self-energy corrections 
for the pion electromagnetic form factors [23,25], because these self-energy diagrams just correct 
the light quark fields, while don’t involve the inner structure of the initial and final mesons. The 
additional factor 1/2 is considered for self-energy diagrams Fig. 5(a, b, c, d) because of the 
freedom to choose the most outside vertex of the radiative gluon.

The vertex correction diagrams with three-point loop integrals are plotted in Fig. 6, the NLO 
corrections from these five vertex diagrams are summarized in the following form:
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Fig. 6. The vertex corrections to Fig. 1(a).

G
(1)
6a = αsCF

4π

[
1

ε
+ ln

4πμ2

Q2eγE
− 2 lnx2 ln δ2 − 2 ln δ2 − 2 lnx2 − 5π2

2
+ 2

]
H(0),

G
(1)
6b = − αs

8πNc

[
1

ε
+ ln

4πμ2

x2Q2eγE
+ 1

]
H(0),

G
(1)
6c = − αs

8πNc

[
1

ε
+ ln

4πμ2

δ23Q2eγE
− ln

δ2

δ23
ln

δ3

δ23
− ln

δ3

δ23
− ln

δ3

δ23
− π2

3
+ 2

]
H(0),

G
(1)
6d = αsNc

8π

[
3

ε
+ 3 ln

4πμ2

δ23Q2eγE
− ln

δ2

δ23
− ln

δ3

δ23
+ 6

]
H(0),

G
(1)
6e = αsNc

8π

[
3

ε
+ 3 ln

4πμ2

x2Q2eγE
− lnx3 ln δ3 − ln δ3

+ lnx2 lnx3 + lnx3 − π2

3
+ 6

]
H(0). (34)

All these five vertex diagrams would have IR divergences at the first sight. The radiated gluon in 
Fig. 6(a) would generate the collinear divergence when it’s parallel to the initial momentum p2. 
Fig. 6(b) would include the collinear divergence at l ‖ p3 region. Fig. 6(c) would generate both 
the soft and collinear divergence because the radiated gluon is attached to the external light quark 
lines, then the double logarithm would appear. The radiated gluon in Fig. 6(d) would generate the 
collinear divergences from l ‖ p2 and l ‖ p3 regions, while the gluon in Fig. 6(e) could generate 
the collinear divergence in the l ‖ p2 region. But the detailed calculations show that the collinear 
singularity in Fig. 6(b) is forbidden by the kinetics, so G(1)

6b is IR finite.
The box and pentagon diagram in Fig. 7 are more complicate because they would involve 

four-point and five-point integrals. But the sub-diagrams Figs. 7(a, e) are reducible diagrams and 
their contributions will be canceled completely by the relevant effective diagrams to be evaluated 
in the next subsection, so we can set them to be zero here safely. Then we just need to calcu-
late three four-point diagrams Figs. 7(b, d, f) and one five-point diagram Fig. 7(c). From the 
evaluations of the Feynman diagrams in Fig. 7 we find the following NLO corrections:

G
(1)
7a,7e ≡ 0,

G
(1)
7b = −αsNc [ln δ2 − ln δ23 − 1]H(0),
8π
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Fig. 7. The box and pentagon corrections to Fig. 1(a).

G
(1)
7c = − αs

8πNc

[
ln δ2 ln δ3 − 2 lnx2 ln δ2 − ln δ2 + 1

2
ln2 δ23 − ln2 x3 − 5

12
π2

]
H(0),

G
(1)
7d = αs

8πNc

[
ln δ2 ln δ3 − 2 lnx2 ln δ2 + ln δ3 − lnx2 − π2

3
− 1

]
H(0),

G
(1)
7f = − αs

8πNc

[
ln

δ1

δ23
ln

δ3

δ23
− lnx3 ln δ3 + 1

2
ln2 δ23

+ lnx2 lnx3 − 3

2
ln2 x3 − π2

3
− 1

]
H(0). (35)

The three sub-diagrams Figs. 7(c, d, f) all generate the double logarithms, because the two end-
points of the radiated gluon is attached to the external lines, which could result in the soft and 
collinear singularities. Fig. 7(b) contains only the collinear divergence in the l ‖ p2 region be-
cause one end-point of the radiated gluon is attached to the internal gluon.

For the remaining IR singularities generated in Figs. 5–7, we can sort them into two groups as 
shown in Eqs. (36), (37) by using the phase space splicing method [35]: one is from the region 
l ‖ p2 and the other is from the region l ‖ p3.

G
(1)
IR1 = αsCF

4π
[−2 lnx2 ln δ2 − 4 ln δ2]H(0), (36)

G
(1)
IR2 = αsCF

8π
[−2 lnx3 ln δ3 − 4 ln δ3]H(0). (37)

As for the UV divergences, they are forbidden for the Feynman diagrams in Fig. 7 from the 
surface divergence analysis. The UV divergences in the NLO quark level diagrams in Figs. 5, 6
can be summed up and written in the form of

αs

4π

(
11 − 2

3
Nf

)
1

ε
. (38)

Such UV divergence is the same one as that appeared in the pion electromagnetic form factors 
[23,25].
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Fig. 8. The effective O(αs) diagrams for the twist-2 initial π meson wave functions.

3.2. Convolutions of the NLO wave functions with the LO hard kernel

As argued in Refs. [18–20,25], the IR divergences of the NLO corrections from the quark level 
Feynman diagrams in Figs. 5–7 can be absorbed into the non-perturbative wave functions which 
are universal. Based on this argument, we will make a convolution of the NLO wave functions 
with the LO hard kernel H(0), and find that the resultant IR part should cancel the IR divergences 
appeared in the NLO amplitude G(1)

IR1 and G(1)
IR2 as given in Eqs. (36), (37). The twist-2 part of the 

initial pion wave function 	π,A(x2, k2T ; x′
2, k

′
2T ) and the twist-3 part of the final state pion wave 

function 	π,P (x′
3, k

′
3T ; x3, k3T ) can be defined by the non-local matrix elements [18–20,25],

	π,A(x2, k2T ;x′
2, k

′
2T ) =

∫
dy−

2π

d2yT

(2π)2
e−ix′

2P
+
2 y−+ik′

2T ·yT

· < 0 | q(y)γ5/n−Wy(n1)
†In1;y,0W0(n1)q(0) | u(P2 − k2)d(k2) >, (39)

	π,P (x′
3, k

′
3T ;x3, k3T ) =

∫
dz+

2π

d2zT

(2π)2
e−ix′

3P
−
3 z++ik′

3T ·zT

· < 0 | q(z)Wz(n2)
†In2;z,0W0(n2)γ5q(0) | u(P3 − k3)d(k3) >, (40)

where y = (0, y−, yT ) and z = (z+, 0, zT ) are the light-cone coordinates of the anti-quark field q̄ , 
Wy(n1) and Wy(n2) with the choice of n2

i �= 0 to avoid the light-cone singularity [21,24,36] are 
the Wilson line integrals:

Wy(n1) =P exp[−igs

∞∫
0

dλn1 · A(y + λn1)], (41)

Wz(n2) =P exp[−igs

∞∫
0

dλn2 · A(z + λn2)], (42)

where the symbol P denotes the path ordering operator.
We firstly consider the convolutions of the O(αs) twist-2 initial pion wave functions 	(1)

π,A,i , 
as shown in Fig. 8, with the O(αs) hard kernel H(0) in Eq. (31),
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(1)
π,A ⊗ H(0) ≡

h∑
i=a

∫
dx′

2d
2k′

2T 	
(1)
π,A,i(x2,k2T ;x′

2,k′
2T )H(0)(x′

2,k′
2T ;x3,k3T ). (43)

The reducible effective diagram Fig. 8(c) carry all the NLO contributions from the reducible 
diagrams Fig. 7(a), so we can also set it’s contribution to be zero safely. The convolutions of the 
NLO initial wave functions 	(1)

π,A,i and the LO hard kernel H(0) are summarized as

	
(1)
π,A,a ⊗ H(0) = −αsCF

8π

[
1

ε
+ ln

4πμ2
f

δ2Q2eγE
+ 2

]
H(0),

	
(1)
π,A,b ⊗ H(0) = −αsCF

8π

[
1

ε
+ ln

4πμ2
f

δ2Q2eγE
+ 2

]
H(0),

	
(1)
π,A,c ⊗ H(0) ≡ 0,

	
(1)
π,A,d ⊗ H(0) = αsCF

4π

[
1

ε
+ ln

4πμ2
f

ξ2
2 eγE

− ln2 (δ2rQ2) − 2 ln (δ2rQ2) − π2

3
+ 2

]
H(0),

	
(1)
π,A,e ⊗ H(0) = αsCF

4π

[
ln2 (

δ2rQ2

x2
) + π2

]
H(0),

	
(1)
π,A,f ⊗ H(0) = αsCF

4π

[
1

ε
+ ln

4πμ2
f

ξ2
2 eγE

− ln2 (
δ2rQ2

x2
2

) − 2 ln (
δ2rQ2

x2
2

) − π2

3
+ 2

]
H(0),

	
(1)
π,A,g ⊗ H(0) = αsCF

4π

[
ln2 (

δ2rQ2

x2
2

) − π2

3

]
H(0),

(	
(1)
π,A,h + 	

(1)
π,A,i + 	

(1)
π,A,j ) ⊗ H(0) = αsCF

2π

[
1

ε
+ ln

4πμ2
f

Q2eγE
− ln δ23

]
H(0), (44)

where rQ2 = Q2/ξ2
2 and the scale ξ2

2 ≡ 4(n1 · p2)
2/|n2

1| = Q2|n−
1 /n+

1 | are introduced to regu-
larize the light corn singularity. We can find that the double logarithms only generated from the 
effective diagrams without the loop momentum l flowing into the LO hard kernel, such as the 
case in Figs. 8(d) and 8(f), because the effective diagrams with the soft loop momentum flowing 
into the LO hard kernel are highly suppressed by the dynamics. These double logarithms are 
canceled each other completely, resulting in single logarithms only. These single logarithms will 
be canceled by the IR singularity as given in Eq. (36) from the NLO quark level diagrams.

The remaining convolutions to be treated are those between the O(αs) hard kernel H(0) and 
the O(αs) twist-3 final state pion wave functions 	(1)

π,P,i as shown in Fig. 9.

H(0) ⊗ 	
(1)
π,P ≡

h∑
i=a

∫
dx′

3d
23k′

3T H(0)(x2,k2T ;x′
3,k′

3T )	
(1)
π,P,i (x

′
3,k′

3T ;x3,k3T ). (45)

We can also set the convolution of the H(0) and Fig. 9(c) zero with the same reason as for
Fig. 8(c). Then all the convolutions of the effective diagrams in Fig. 9 read as

H(0) ⊗ 	
(1)
π,P,a = −αsCF

8π

[
1

ε
+ ln

4πμ2
f

δ3Q2eγE
+ 2

]
H(0),
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Fig. 9. The effective O(αs) diagrams for the twist-3 final π meson wave functions.

H(0) ⊗ 	
(1)
π,P,b = −αsCF

8π

[
1

ε
+ ln

4πμ2
f

δ3Q2eγE
+ 2

]
H(0),

H (0) ⊗ 	
(1)
π,P,c ≡ 0,

H (0) ⊗ 	
(1)
π,P,d = αsCF

8π

[
1

ε
+ ln

4πμ2
f

ξ2
3 eγE

− ln2 (δ3rQ3) − 2 ln (δ3rQ3) − π2

3
+ 2

]
H(0),

H (0) ⊗ 	
(1)
π,P,e = αsCF

8π

[
ln2 (

δ3rQ3

x3
) + π2

]
H(0),

H (0) ⊗ 	
(1)
π,P,f = αsCF

8π

[
1

ε
+ ln

4πμ2
f

ξ2
3 eγE

− ln2 (
δ3rQ3

x2
3

) − 2 ln (
δ3rQ3

x2
3

) − π2

3
+ 2

]
H(0),

H (0) ⊗ 	
(1)
π,P,g = αsCF

8π

[
ln2 (

δ3rQ3

x2
3

) − π2

3

]
H(0),

H (0) ⊗ (	
(1)
π,P,h + 	

(1)
π,P,i + 	

(1)
π,P,j ) = αsCF

4π

[
1

ε
+ ln

4πμ2
f

Q2eγE
− ln δ23

]
H(0), (46)

where rQ3 = Q2/ξ2
3 with the scale ξ2

3 ≡ 4(n2 · p3)
2/|n2

2| = Q2|n+
2 /n−

2 |. The double logarithms 
in Eq. (46) are also canceled each other as the case in Eq. (44), and the remaining single log-
arithms can also been canceled by the IR singularity in Eq. (37). When compared with the 
convolutions of the irreducible diagrams in Figs. 8(d, e, f, g), there is an additional factor 1/2
for those of the irreducible diagrams Fig. 9(d, e, f, g), since the twist-3 final state wave functions 
	

(1)
π,P,i have different spin structure from the twist-2 initial state wave function 	(1)

π,A,i .

3.3. The NLO hard kernel

The kT factorization theorem states that the NLO hard kernel can be obtained by taking the 
difference of the NLO quark level diagrams and the convolutions of LO hard kernel with NLO 
wave functions [18–20,25], i.e.,

H(1)(x2,k2T ;x3,k3T ) = G(1)(x2,k2T ;x3,k3T )
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−
h∑

i=a

∫
dx′

2d
2k′

2T 	
(1)
π,A,i(x2,k2T ;x′

2,k′
2T )H(0)(x′

2,k′
2T ;x3,k3T )

−
h∑

i=a

∫
dx′

3d
2k′

3T H(0)(x2,k2T ;x′
3,k′

3T )	
(1)
π,P,i (x

′
3,k′

3T ;x3,k3T ). (47)

Besides the contributions from the reducible diagrams, we here sum up all G(1)
i as given in 

Eqs. (33)–(35) to obtain the NLO corrections G(1) from the quark level diagrams in Figs. 5–7
for Nf = 6 and find the result,

G(1) = αsCF

8π

[
29

2

(
1

ε
+ ln

4πμ2

Q2eγE

)
− 4 ln δ2(lnx2 + 1) − 2 ln δ3(lnx3 + 1) − 1

4
ln2 δ23

+ 9

4
ln δ23 + 1

2
lnx2 lnx3 + 5

8
ln2 x3 − 43

4
lnx2 + 9

4
lnx3 − 267π2

48
+ 65

2

]
H(0).

(48)

By summing up all convolutions as listed in Eqs. (44), (46) for Figs. 8, 9 without the reducible 
diagrams, we find the total result:

	
(1)
π,A ⊗ H(0) = αsCF

4π

[4

ε
+ 4 ln

4π

eγE
+ 4 ln

μ2
f

Q2
− 2 ln (δ2rQ2)(lnx2 + 2)

+ ln2 x2 − 2 ln δ23 + 4 ln (x2rQ2) − π2 + 4
]
H(0), (49)

H(0) ⊗ 	
(1)
π,P = αsCF

8π

[4

ε
+ 4 ln

4π

eγE
+ 4 ln

μ2
f

Q2
− 2 ln (δ3rQ3)(lnx3 + 2)

+ ln2 x3 − 2 ln δ23 + 4 ln (x3rQ3) − π2 + 4
]
H(0). (50)

The UV divergence in Eq. (48), which would determine the renormalization-group (RG) evolu-
tion of the strong coupling constant αs , is the same one as that in the pion electromagnetic form 
factor as given in Refs. [23,25]. The bare coupling constant αs in Eqs. (48)–(50) can be rewritten 
as

αs = αs(μf ) + δZ(μf )αs(μf ), (51)

with the counter-term δZ(μf ) defined in the modified minimal subtraction scheme (MS). We can 
insert the αs in Eq. (51) into Eqs. (31), (48)–(50) to regularize the UV poles in Eq. (47) through 
the term δZ(μf )H(0), and then the UV poles in Eqs. (49), (50) are regulated by the counter-term 
of the quark field and by an additional counter-term in Eq. (51).

One should be careful that the internal quark with the tiny momentum fraction x2 would be 
on-shell, which would then generate an additional double logarithm ln2 x2, so we must subtract 
this jet function as described in Eq. (52) to obtain the real NLO hard kernel.

J (1)H (0) = −1

2

αs(μf )CF

4π

[
ln2 x2 + lnx2 + π2

3

]
H(0). (52)

After renormalizing the UV divergences and subtracting the jet function, one can obtain the 
NLO hard kernel for Fig. 1(a) by combing the results as given previously in Eqs. (47)–(50)
together:
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H(1)(xi,μ,μf ,Q2) ≡ F (1)(xi,μ,μf ,Q2)H (0), (53)

with

F (1)(xi,μ,μf ,Q2)

= αs(μf )CF

8π

[
21

2
ln

μ2

Q2
− 8 ln

μ2
f

Q2
− 1

4
ln2 δ23 + 33

4
ln δ23 + 1

2
lnx2 lnx3

− 3

8
ln2 x3 − ln2 x2 − 71

4
lnx2 − 7

4
lnx3 − 107

48
π2 + 41

2

]
, (54)

here one has made the choice for rQ2 = rQ3 ≡ 1 as in Refs. [23,25].

3.4. Numerical results and discussions

In this subsection we will calculate the NLO corrections to the space-like scalar pion form 
factor in the kT factorization theorem numerically. From the expression of the NLO hard kernel 
H(1)(xi, μ, μf , Q2) as given in Eq. (53), one can define the space-like scalar pion form factor 
for Fig. 1(a) up to NLO as the form of

Q2F(Q2)|NLO

= 8πm0πCF Q4
∫

dx2dx3

∫
b2db2b3db3 αs(t) · e−2Sπ (t) · h(x2, x3, b2, b3)

·
{

2φA
π (x2)φ

P
π (x3)St (x3)

[
1 + F (1)(xi,μ,μf ,Q2)

]
+ x2

[
φP

π (x2) − φT
π (x3)

]
φA

π (x3)
}
,

(55)

where the function F (1)(xi, μ, μf , Q2) describes the NLO contribution to the space-like scalar 
pion form factor and has been defined in Eq. (54).

Since the initial and final state meson are the same pion meson, which is a qq̄ bound state 
and also a Nambu–Goldstone boson, then there is an exchange symmetry of the momentum 
fractions for the two sub-diagrams in Fig. 1, as we have demonstrated in Section 2. This sym-
metry imply that the NLO correction F (1)

b (xi, μ, μf , Q2) to the dominant first term proportional 

to φA
π (x3)φ

P
π (x2) in H(0)

b (x2, x3, Q2) in Eq. (17) can be obtained from F (1)(xi, μ, μf , Q2) in 
Eq. (54) by simple replacements of x2 ↔ x3, and is of the form

F
(1)
b (xi,μ,μf ,Q2) = αs(μf )CF

8π

[
21

2
ln

μ2

Q2
− 8 ln

μ2
f

Q2
− 1

4
ln2 δ23 + 33

4
ln δ23

+ 1

2
lnx3 lnx2 − 3

8
ln2 x2 − ln2 x3 − 71

4
lnx3 − 7

4
lnx2 − 107

48
π2 + 41

2

]
(56)

while the space-like scalar pion form factor from Fig. 1(b) up to NLO level can be written as the 
form of

Q2F(Q2)|b,NLO

= 8πm0πCF Q4
∫

dx2dx3

∫
b2db2b3db3 αs(t)
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Fig. 10. The pQCD predictions for the space-like scalar pion form factor Q2F(Q2) for Fig. 1(a) and for Fig. 1(b).

· e−2Sπ (t) · h(x2, x3, b2, b3)

·
{

2φA
π (x3)φ

P
π (x2)St (x2)

[
1 + F

(1)
b (xi,μ,μf ,Q2)

]
+ x3

[
φP

π (x3) − φT
π (x3)

]
φA

π (x2)
}
.

(57)

Explicit analytical calculations also confirmed this exchanging symmetry directly.
In Fig. 10, we plot the Q2-dependence of the pQCD predictions for the form factor Q2F(Q2). 

Fig. 10(a) and Fig. 10(b) show the result from Fig. 1(a) and Fig. 1(b), respectively. The upper 
dot-dashed and lower dotted curve shows the LO contribution and the NLO correction respec-
tively, while the solid curve refers to the total pQCD predictions after the inclusion of the NLO 
corrections. From the numerical results as illustrated in Fig. 10, we find the following points:

1. As shown by the dots line in Fig. 10, the NLO correction to the LO pQCD prediction for 
Q2F(Q2) is negative in sign and very small in magnitude in the whole considered region 
of Q2. The inclusion of the NLO corrections can produce a small decrease, less than 8% in 
magnitude, to the LO result in the region of 1 ≤ Q2 ≤ 30 GeV2.

2. As illustrated by the curves in Fig. 10(a, b), the LO and NLO contributions to the form factor 
Q2F(Q2) from Fig. 1(a) and Fig. 1(b) are indeed identical, which is what we expect based 
on the exchanging symmetry as discussed in Section 2.

4. NLO corrections and effects on B → ππ decays

In this section we will extend our calculations for the NLO correction to the LO space-like 
scalar pion form factor to the case in the time-like range by the analytical continuation, and then 
revisit the puzzled B → ππ decays with the inclusion of this new NLO correction by employing 
the pQCD factorization approach.

4.1. NLO corrections to the time-like scalar pion form factor

With the NLO space-like scalar pion hard kernel in Eq. (54) and the analytical continuation 
relation, we can obtain the NLO hard amplitude for the time-like scalar pion form factor in the 
kT space by substituting −M2 − iε for the scale Q2 of the factorizable annihilation process in 
B
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the B meson decays, and −x2(1 −x3)M
2
B +|k2T −k3T|2 − iε for the internal gluon. The single-b 

convoluted NLO time-like hard kernel can be expressed as

H
′ (1)
a,32(xi, kT, t,M2

B) ≡ F
′(1)
a,32(xi, kT, t,M2

B) · H ′ (0)
a,32, (58)

F
′ (1)
a,32(xi, kT, t,M2

B) = αs(μf )CF

8π

[5

2
ln

μ2

M2
B

− 1

4
ln2 δ′

23 + 33

4
ln δ′

23 − ln2 (1 − x3)

− 3

8
ln2 x2 + 1

2
lnx2 ln (1 − x3) − 71

4
ln (1 − x3)

− 7

4
lnx2 − 95

48
π2 + 41

2
+ iπ

(
1

2
ln δ′

23 − 23

4

)]
, (59)

where H ′ (0)
a,32 has been given in Eq. (23), H ′ (1)

a,32 and F ′ (1)
a,32 represent the corresponding NLO time-

like scalar hard kernel and the NLO correction factor with the following notation,

ln δ′
23 = ln

|k2T − k3T|2 − x2(1 − x3)M
2
B

M2
B

+ iπ · �(|k2T − k3T|2 − x2(1 − x3)M
2
B). (60)

We can then obtain the NLO single-b convolution time-like scalar pion form factor by the Fourier 
transformation of Eq. (58) from the k3T space to the b3 space as well as the integration over the 
kinematic variables. And the time-like scalar pion form factor up to NLO level can then be 
written as

F
′ (1)
a,I = −

1∫
0

dx2dx3

∞∫
0

db3
CF M2

Bmπ
0

π(1 − x3)
·
{

2φP
π (x2)φ

A
π (x3)St (x2)K

′ (1)
0 (z)

+
[
(1 − x3)φ

A
π (x2)

(
φP

π (x3) + φT
π (x3)

)
+ 2φP

π (x2)φ
A
π (x3)

(
1 + F

′ (1)
32

)
· St (x2)

]
· K0(z)

}
· αs(μ) · exp [−SI(x2, b2;1 − x3, b3;MB;μ)] , (61)

where z = i
√

(1 − x3)x2MBb3, the definition of the function K ′ (1)
0 (z) is of the form

K
′ (1)
0 (z) =

[
∂2

∂α2
K(1)

α (z)

]
α=0

, (62)

which comes from the Fourier transformation of ln2 (|k2T − k3T|2 − x2(1 − x3)M
2
B − iε), and 

α denotes the order parameter of the modified Hankel function, and it’s magnitude behaves as 
|K ′ (1)

0 (z)| ∼ (1/3) ln2 (z)|K0(z)| when the argument |z| → 0. The NLO correction factor F ′ (1)
32

in Eq. (61) is of the form

F
′ (1)
32 (xi, b3, t,M

2
B) = αs(μf )CF

8π

{
5

2
ln

μ2

M2
B

− 1

16
ln2

(
4x2(1 − x3)

M2
Bb2

3

)

+ (
33

8
− γE

4
) ln

(
4x2(1 − x3)

M2
Bb2

3

)
− ln2 (1 − x3) − 3

8
ln2 x2 + 1

2
lnx2 ln (1 − x3)

− 71

4
ln (1 − x3) − 7

4
lnx2 − 105

48
π2 + 41

2
− γ 2

E

4
− 33γE

4
+ iπ ·

[
5

2

]}
, (63)

where γE is the Euler constant.
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Fig. 11. The μ0-dependence of the pQCD predictions for the time-like scalar pion form factor F ′
a,I at the LO and NLO 

level. The left (right) figure shows the real (imaginary) part of the form factor. The short-dash and solid line shows the 
pQCD predictions for the form factor F ′

a,I at the LO and the NLO level, respectively.

4.2. NLO effects on B → ππ decays

In this subsection we will firstly show the NLO contributions to the time-like scalar pion 
form factor F ′ (1)

a,I in the kT factorization theorem numerically, and then examine the effects of 
such NLO contribution on the pQCD predictions for the branching ratios of the rare B → ππ

decays.
In the calculations for the LO time-like scalar pion form factor F ′ (0)

a , we considered the cases 
for both the single-b and double-b convolution and found that the differences are very small 
between these two different convolution methods. Consequently, we make the calculation for the 
NLO form factor F ′ (1)

a as given in Eq. (61) by using the single-b convolution only.
In Fig. 11(a) and 11(b), we show the μ0-dependence of the real and imaginary part of the 

time-like scalar pion form factor F ′
a,I at the LO and NLO level, respectively. The short-dash line 

in Fig. 4 shows the LO contribution, while the solid line shows the form factor after the inclusion 
of the NLO contribution.

In Fig. 12(a) and 12(b), however, we show the μ0-dependence of the pQCD predictions for 
the absolute values and their arguments of the time-like scalar pion form factor F ′

a,I at the LO 
(the short-dash line) and NLO (the solid line) level, respectively. For fixed μ0 = 1.0 GeV, we 
have numerically

F ′
a,I =

{
0.0238 − i0.0340, LOI,

0.0259 − i0.0329, NLOI,

=
{

0.0415 · exp[−i55.0◦], LOI,

0.0419 · exp[−i51.8◦], NLOI.
(64)

From Figs. 11, 12 and the numerical results in Eq. (64), one can see the following points:

1. The NLO part is indeed very small in size, brings little correction to both the real- and 
imaginary part of the LO form factor, and is almost independent with the variation of cutoff 
scale μ0.
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Fig. 12. The same as in Fig. 11, but for the μ0-dependence of the absolute value and their argument of the considered 
form factor F ′ (0)

a,I and F ′ (1)
a,I .

2. The real part of the time-like scalar pion form factor is positive, while its imaginary part 
is negative, which leads to a large strong phase around −55◦ and play an important role in 
producing large CP violation for B → ππ decays.

In the pQCD factorization approach, the NLO contribution to B → ππ decays from the fac-
torizable annihilation diagrams are described by the time like scalar pion form factor F ′ (1)

a,I , in 
other words, it is the NLO “annihilation correction”. After the inclusion of this new NLO time-
like scalar pion form factor in Eq. (61), we recalculate the three rare decays B → ππ in the 
pQCD factorization approach by using the pion distribution amplitudes as given in Eq. (19). Be-
cause this newly known NLO contribution brings only a very small correction to the LO form 
factor as we have elaborated in previous section, one generally expect that such new NLO con-
tribution to the time-like scalar pion form factor cannot change the pQCD predictions for the 
B → ππ decays obviously.

In the framework of the pQCD factorization approach, the LO contributions to B → ππ

decays come from the emission diagrams, the hard-spectator diagrams, the factorizable and non-
factorizable annihilation diagrams as illustrated in Fig. 1 of Ref. [16]. At the NLO level, on the 
other hand, those currently known NLO contributions to B → ππ decays include the following 
pieces from rather different sources:

1. The Wilson coefficients Ci(mW) and the renormalization group evolution matrix U(μ,

mW, α) at the NLO level [40], as well as the strong coupling constant αs(μ) at two-loop 
level [41].

2. The NLO contributions from the vertex corrections (VC), the quark-loops (QL), and the 
chromo-magnetic penguin operator O8g (MP) as given in Refs. [13,39,42].

3. The NLO twist-2 and twist-3 contributions to the form factors of the B → π transition as 
presented in Refs. [24,26].

4. The NLO contribution to the time-like scalar pion form factor F ′
a,I, i.e., the NLO “annihi-

lation correction” to the factorizable annihilation diagrams (see Fig. 2), evaluated firstly in 
this paper.

The still missing NLO parts in the pQCD approach are those O(α2
s ) contributions to the hard 

spectator diagrams and the non-factorizable annihilation diagrams.
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Table 1
The LO and NLO pQCD predictions for the branching rations (in unit of 10−6) of the three B → ππ decays. The last 
column lists the data from Refs. [37,38]. For details, see text.

Channel LO NLO0 [16] NLO QCDF [39] Data

Br(B0 → π+π−) 6.87 7.67 7.69+3.27
−2.67 8.9 5.11 ± 0.22

Br(B+ → π+π0) 3.54 4.27 4.27+1.85
−1.47 6.0 5.38+0.35

−0.34

Br(B0 → π0π0) 0.12 0.23 0.24+0.09
−0.07 0.3 0.9 ± 0.12

Following the same procedure1 as in Ref. [16], we make the numerical calculations and 
present the pQCD predictions for the branching ratios of the three B → ππ decays after the 
inclusion of all currently known NLO corrections in Table 1. In the third column of Table 1, 
we list the NLO pQCD predictions for the branching ratios of three decay modes as given in 
Ref. [16], where all known NLO contributions except for the NLO contribution to the factoriz-
able annihilation diagrams calculated in this paper have been taken into account. The numerical 
results in the fourth column with the label “NLO”, however, are obtained with the inclusion of 
all currently known NLO contributions in the pQCD factorization approach. In fifth column, we 
show the central values of the theoretical predictions based on the QCDF approach [39], while 
the last column lists the data from Refs. [37,38].

From our analytical and numerical calculations for the pQCD predictions for the branching 
ratios of the three B → ππ decays, we have the following observations:

1. The B+ → π+π0 decay do not receive corrections from this new NLO annihilation correc-
tion, because the annihilation diagrams do not contribute to B+ → π+π0 decay mode.

2. For B0 → (π+π−, π0π0) decays, the inclusion of the NLO contribution to the factorizable 
annihilation diagram can produce a very small enhancement to their branching ratios, less 
than 3% to the LO results. The well-known ππ -puzzle cannot be interpreted by the inclu-
sion of this very small NLO contribution. This fact, on the other hand, do support the general 
expectation in the pQCD factorization approach [15,16]: the NLO correction to the annihi-
lation diagrams of B → PP decays are the higher order corrections to the small quantities, 
and therefore should be very small in magnitude.

For the CP violating asymmetries of the three B → ππ decays [16], the effects due to the 
inclusion of the newly known NLO annihilation correction F ′ (1)

a,I is also very small in size and 
can be neglected safely.

5. Conclusion

In this paper, we made the first calculation for the NLO contribution to the space-like- and 
time-like scalar pion form factor in the kT factorization theorem, which is in turn the O(α2

s )

NLO correction to the factorizable annihilation diagrams for B → ππ decays. The external light 
quarks are all set off-shell by k2

iT to regulate the IR divergences which would appear in the NLO 
calculations.

1 For the sake of simplicity, we do not show the explicit expressions of the decay amplitudes of B0 → π+π−, π0π0

and B+ → π+π0 decays here. For relevant formulaes, one can see those as given in Ref. [16] explicitly.
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We calculated both the NLO quark-level diagrams and the convolutions of the LO hard kernel 
H(0) with the NLO wave functions to obtain the NLO space-like hard kernel H(1). Because 
all quarks in this process are massless, then all the IR divergences in these two type diagrams 
can be described by the logarithms ln2 (kiT). The QCD dynamics ensures that the contribution 
from the radiated soft gluon is highly suppressed by 1/Q2 in the perturbative theory, our LO 
and NLO numerical calculations confirmed this point by showing that the double logarithms 
ln2 (kiT) generated from the soft kinetic region are canceled completely between the quark-level 
diagrams and the effective diagrams respectively. We then prove that all the remaining collinear 
divergences from the quark-level diagrams are also canceled by those from the effective diagrams 
at NLO level, which is also the basic requirement of the kT factorization theorem.

We made the numerical evaluations for the space-like scalar pion form factor Q2F(Q2) up to 
NLO by using the full pion DAs in the integration. From the NLO space-like scalar pion form 
factor, we found the NLO time-like scalar pion form factor F ′ (1)

a,I by analytical continuation, 
which describes the NLO O(α2

s ) contribution to the factorizable annihilation diagrams for the 
considered B → ππ decays in this paper. By taking the newly known NLO annihilation correc-
tion F ′ (1)

a,I into account, we recalculate the branching ratios of the three B → ππ decays with 
the inclusion of all currently known NLO contributions, and to check the effect of this NLO 
annihilation correction.

Based on our analytical evaluations and the numerical results, we found the following points:

1. We completed the first analytical calculation for the NLO contribution to the space-like and 
time-like scalar pion form factor in the kT factorization theorem.

2. There is an exchanging symmetry between the LO hard kernel H(0)
a and H(0)

b : the contribu-
tion to the form factor Q2F(Q2) from Fig. 1(a) and Fig. 1(b) are indeed identical.

3. The NLO correction to the space-like scalar pion form factor has an opposite sign with the 
LO one but is very small in magnitude, can produce at most 10% decrease to Q2F(Q2) in 
the considered Q2 region.

4. By making the analytical continuation, we found the NLO time-like scalar pion form fac-
tor F ′ (1)

a,I from the space-like one, which describes the NLO annihilation correction to the 
considered B → ππ decays.

5. The NLO part of the form factor F ′ (1)
a,I is very small in size, and is almost independent with 

the variation of cutoff scale μ0. But the form factor F ′ (1)
a,I has a large strong phase around 

−55◦ and can play an important role in producing large CP violation for B → ππ decays.
6. For B0 → (π+π−, π0π0) decays, the effects of the newly known NLO contribution to the 

pQCD predictions for their branching ratios are very small, less than 3% in magnitude. 
The well-known ππ -puzzle cannot be interpreted by the inclusion of this very small NLO 
contribution.
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