32,120 research outputs found

    Learning Points and Routes to Recommend Trajectories

    Full text link
    The problem of recommending tours to travellers is an important and broadly studied area. Suggested solutions include various approaches of points-of-interest (POI) recommendation and route planning. We consider the task of recommending a sequence of POIs, that simultaneously uses information about POIs and routes. Our approach unifies the treatment of various sources of information by representing them as features in machine learning algorithms, enabling us to learn from past behaviour. Information about POIs are used to learn a POI ranking model that accounts for the start and end points of tours. Data about previous trajectories are used for learning transition patterns between POIs that enable us to recommend probable routes. In addition, a probabilistic model is proposed to combine the results of POI ranking and the POI to POI transitions. We propose a new F1_1 score on pairs of POIs that capture the order of visits. Empirical results show that our approach improves on recent methods, and demonstrate that combining points and routes enables better trajectory recommendations

    Field Scanner Design for MUSTANG of the Green Bank Telescope

    Full text link
    MUSTANG is a bolometer camera for the Green Bank Telescope (GBT) working at a frequency of 90 GHz. The detector has a field of view of 40 arcseconds. To cancel out random emission change from atmosphere and other sources, requires a fast scanning reflecting system with a few arcminute ranges. In this paper, the aberrations of an off-axis system are reviewed. The condition for an optimized system is provided. In an optimized system, as additional image transfer mirrors are introduced, new aberrations of the off-axis system may be reintroduced, resulting in a limited field of view. In this paper, different scanning mirror arrangements for the GBT system are analyzed through the ray tracing analysis. These include using the subreflector as the scanning mirror, chopping a flat mirror and transferring image with an ellipse mirror, and chopping a flat mirror and transferring image with a pair of face-to-face paraboloid mirrors. The system analysis shows that chopping a flat mirror and using a well aligned pair of paraboloids can generate the required field of view for the MUSTUNG detector system, while other systems all suffer from larger off-axis aberrations added by the system modification. The spot diagrams of the well aligned pair of paraboloids produced is only about one Airy disk size within a scanning angle of about 3 arcmin.Comment: 7 pages, 9 figure

    A novel online data-driven algorithm for detecting UAV navigation sensor faults

    No full text
    The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs' flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate

    Feasibility Study of Tractor-Test Vehicle Technique for Practical Structural Condition Assessment of Beam-Like Bridge Deck

    Get PDF
    The tractor-test vehicle technique of non-destructive testing for indirect measurement of the modal properties of a bridge deck is revisited in this paper with several improvements for possible practical application to the structural condition assessment of a beam-like bridge deck. The effect of damping of the vehicle-bridge system is considered and the modal properties from only the first vibration mode of the structure will be used for a quick and simple assessment. The two test vehicles are designed to have the same modal frequency and damping ratio but with parameters in the follower No.2 test vehicle proportional to those in the follower No.1 test vehicle. This effectively removes the effect of road surface roughness in the response of an equivalent vehicle such that the error in the subsequent condition assessment is reduced. Through data collected on-site transmitted to the remote computer platform, a simple technique based on the moment-curvature relationship acceptable to practical engineers is adopted for the condition assessment with improvements in the estimation of the element bending stiffness of the deck. Scenarios with different damping, vehicle speed, road surface roughness, and local damages in the bridge structure are studied with or without temperature effect in the measurement. Through numerical simulations and field tests, the tractor-test vehicle technique of non-destructive testing with the proposed modifications and improvements has been demonstrated to give consistently accurate estimates of the element bending stiffness of the bridge deck but with a small error close to the end of the deck

    Pair creation rates for one-dimensional fermionic and bosonic vacua

    Get PDF
    We compare the creation rates for particle-antiparticle pairs produced by a supercritical force field for fermionic and bosonic model systems. The rates obtained from the Dirac and Klein-Gordon equations can be computed directly from the quantum-mechanical transmission coefficients describing the scattering of an incoming particle with the supercritical potential barrier. We provide a unified framework that shows that the bosonic rates can exceed the fermionic ones, as one could expect from the Pauli-exclusion principle for the fermion system. This imbalance for small but supercritical forces is associated with the occurrence of negative bosonic transmission coefficients of arbitrary size for the Klein-Gordon system, while the Dirac coefficient is positive and bound by unity. We confirm the transmission coefficients with time-dependent scattering simulations. For large forces, however, the fermionic and bosonic pair-creation rates are surprisingly close to each other. The predicted pair creation rates also match the slopes of the time-dependent particle probabilities obtained from large-scale ab initio numerical simulations based on quantum field theory

    Insights into Hydration Dynamics and Cooperative Interactions in Glycerol-Water Mixtures by Terahertz Dielectric Spectroscopy.

    Get PDF
    We report relaxation dynamics of glycerol-water mixtures as probed by megahertz-to-terahertz dielectric spectroscopy in a frequency range from 50 MHz to 0.5 THz at room temperature. The dielectric relaxation spectra reveal several polarization processes at the molecular level with different time constants and dielectric strengths, providing an understanding of the hydrogen-bonding network in glycerol-water mixtures. We have determined the structure of hydration shells around glycerol molecules and the dynamics of bound water as a function of glycerol concentration in solutions using the Debye relaxation model. The experimental results show the existence of a critical glycerol concentration of ∼7.5 mol %, which is related to the number of water molecules in the hydration layer around a glycerol molecule. At higher glycerol concentrations, water molecules dispersed in a glycerol network become abundant and eventually dominate, and four distinct relaxation processes emerge in the mixtures. The relaxation dynamics and hydration structure in glycerol-water mixtures are further probed with molecular dynamics simulations, which confirm the physical picture revealed by the dielectric spectroscopy

    On the number of Mather measures of Lagrangian systems

    Full text link
    In 1996, Ricardo Ricardo Ma\~n\'e discovered that Mather measures are in fact the minimizers of a "universal" infinite dimensional linear programming problem. This fundamental result has many applications, one of the most important is to the estimates of the generic number of Mather measures. Ma\~n\'e obtained the first estimation of that sort by using finite dimensional approximations. Recently, we were able with Gonzalo Contreras to use this method of finite dimensional approximation in order to solve a conjecture of John Mather concerning the generic number of Mather measures for families of Lagrangian systems. In the present paper we obtain finer results in that direction by applying directly some classical tools of convex analysis to the infinite dimensional problem. We use a notion of countably rectifiable sets of finite codimension in Banach (and Frechet) spaces which may deserve independent interest
    corecore