641 research outputs found

    Model of the Correlation between Lidar Systems and Wind Turbines for Lidar Assisted Control

    Get PDF

    Absence of hole pairing in a simple t-J model on the Shastry-Sutherland lattice

    Full text link
    The Shastry-Sutherland model is a two-dimensional frustrated spin model whose ground state is a spin gap state. We study this model doped with one and two holes on a 32-site lattice using exact diagonalization. When t'>0, we find that the diagonal dimer order that exists at half-filling are retained at these moderate doping levels. No other order is found to be favored on doping. The holes are strongly repulsive unless the hopping terms are unrealistically small. Therefore, the existence of a spin gap at half-filling does not guarantee hole-pairing in the present case

    IceCube's In-Ice Radio Extension: Status and Results

    Full text link
    In 2006-2010, several Radio Frequency (RF) detectors and calibration equipment were deployed as part of the IceCube array at depths between 5 to 1400 meters in preparation for a future large scale GZK neutrino detector. IceCube's deep holes and well-established data handling system provide a unique opportunity for deep-ice RF detection studies at the South-Pole. We will present verification and calibration results as well as a status-review of ongoing analyses such as ice-properties, RF noise and reconstruction algorithms.Comment: 4 pages, 6 figures, to appear in the proceedings of the Acoustic and Radio EeV Neutrino detection Activities (ARENA) 2010 conferenc

    Phonon Universal Transmission Fluctuations and Localization in Semiconductor Superlattices with a Controlled Degree of Order

    Get PDF
    We study both analytically and numerically phonon transmission fluctuations and localization in partially ordered superlattices with correlations among neighboring layers. In order to generate a sequence of layers with a varying degree of order we employ a model proposed by Hendricks and Teller as well as partially ordered versions of deterministic aperiodic superlattices. By changing a parameter measuring the correlation among adjacent layers, the Hendricks- Teller superlattice exhibits a transition from periodic ordering, with alterna- ting layers, to the phase separated opposite limit; including many intermediate arrangements and the completely random case. In the partially ordered versions of deterministic superlattices, there is short-range order (among any NN conse- cutive layers) and long range disorder, as in the N-state Markov chains. The average and fluctuations in the transmission, the backscattering rate, and the localization length in these multilayered systems are calculated based on the superlattice structure factors we derive analytically. The standard deviation of the transmission versus the average transmission lies on a {\it universal\/} curve irrespective of the specific type of disorder of the SL. We illustrate these general results by applying them to several GaAs-AlAs superlattices for the proposed experimental observation of phonon universal transmission fluctuations.Comment: 16-pages, Revte

    Theory of coherent acoustic phonons in InGaN/GaN multi-quantum wells

    Full text link
    A microscopic theory for the generation and propagation of coherent LA phonons in pseudomorphically strained wurzite (0001) InGaN/GaN multi-quantum well (MQW) p-i-n diodes is presented. The generation of coherent LA phonons is driven by photoexcitation of electron-hole pairs by an ultrafast Gaussian pump laser and is treated theoretically using the density matrix formalism. We use realistic wurzite bandstructures taking valence-band mixing and strain-induced piezo- electric fields into account. In addition, the many-body Coulomb ineraction is treated in the screened time-dependent Hartree-Fock approximation. We find that under typical experimental conditions, our microscopic theory can be simplified and mapped onto a loaded string problem which can be easily solved.Comment: 20 pages, 17 figure

    Charged Higgs boson contribution to Μˉe−e\bar{\nu}_e-e scattering from low to ultrahigh energy in Higgs triplet model

    Full text link
    We study the Μˉe−e\bar{\nu}_e-e scattering from low to ultrahigh energy in the framework of Higgs Triplet Model (HTM). We add the contribution of charged Higgs boson exchange to the total cross section of the scattering. We obtain the upper bound hee/MH±â‰Č2.8×10−3GeV−1h_{ee}/M_{H^\pm}\lesssim2.8\times10^{-3}GeV^{-1} in this process from low energy experiment. We show that by using the upper bound obtained, the charged Higgs contribution can give enhancements to the total cross section with respect to the SM prediction up to 5.16% at E≀1014E\leq10^{14} eV and maximum at s≈MH±2s\approx M_{H^\pm}^2 and would help to determine the feasibility experiments to discriminate between SM and HTM at current available facilities.Comment: 6 pages, 6 figure

    Have mirror micrometeorites been detected?

    Full text link
    Slow-moving (v∌15v \sim 15 km/s) 'dark matter particles' have allegedly been discovered in a recent experiment. We explore the possibility that these slow moving dark matter particles are small mirror matter dust particles originating from our solar system. Ways of further testing our hypothesis, including the possibility of observing these dust particles in cryogenic detectors such as NAUTILUS, are also discussed.Comment: Few changes, about 8 pages lon

    Superconductors with Magnetic Impurities: Instantons and Sub-gap States

    Full text link
    When subject to a weak magnetic impurity potential, the order parameter and quasi-particle energy gap of a bulk singlet superconductor are suppressed. According to the conventional mean-field theory of Abrikosov and Gor'kov, the integrity of the energy gap is maintained up to a critical concentration of magnetic impurities. In this paper, a field theoretic approach is developed to critically analyze the validity of the mean field theory. Using the supersymmetry technique we find a spatially homogeneous saddle-point that reproduces the Abrikosov-Gor'kov theory, and identify instanton contributions to the density of states that render the quasi-particle energy gap soft at any non-zero magnetic impurity concentration. The sub-gap states are associated with supersymmetry broken field configurations of the action. An analysis of fluctuations around these configurations shows how the underlying supersymmetry of the action is restored by zero modes. An estimate of the density of states is given for all dimensionalities. To illustrate the universality of the present scheme we apply the same method to study `gap fluctuations' in a normal quantum dot coupled to a superconducting terminal. Using the same instanton approach, we recover the universal result recently proposed by Vavilov et al. Finally, we emphasize the universality of the present scheme for the description of gap fluctuations in d-dimensional superconducting/normal structures.Comment: 18 pages, 9 eps figure

    To wet or not to wet: that is the question

    Full text link
    Wetting transitions have been predicted and observed to occur for various combinations of fluids and surfaces. This paper describes the origin of such transitions, for liquid films on solid surfaces, in terms of the gas-surface interaction potentials V(r), which depend on the specific adsorption system. The transitions of light inert gases and H2 molecules on alkali metal surfaces have been explored extensively and are relatively well understood in terms of the least attractive adsorption interactions in nature. Much less thoroughly investigated are wetting transitions of Hg, water, heavy inert gases and other molecular films. The basic idea is that nonwetting occurs, for energetic reasons, if the adsorption potential's well-depth D is smaller than, or comparable to, the well-depth of the adsorbate-adsorbate mutual interaction. At the wetting temperature, Tw, the transition to wetting occurs, for entropic reasons, when the liquid's surface tension is sufficiently small that the free energy cost in forming a thick film is sufficiently compensated by the fluid- surface interaction energy. Guidelines useful for exploring wetting transitions of other systems are analyzed, in terms of generic criteria involving the "simple model", which yields results in terms of gas-surface interaction parameters and thermodynamic properties of the bulk adsorbate.Comment: Article accepted for publication in J. Low Temp. Phy
    • 

    corecore