6 research outputs found

    Robust Tracking Based on Failure Recovery

    No full text
    Object tracking is a issue in the domain of computer visual, most of current state-of-art approaches for visual tracking adapt tracking-by-detection, using detection to address tracking problem. While suitable for cases when the object is always in the sense and these algorithms always results in failures and can’t track back after failure. This paper we propose a tracking method based on failure recovery. After we choose an object to tracking in the first frame, the object is tracked by improved optical flow method forward and backward in time then compute the distance between these two trajectories. While the distance larger then threshold tracking likely to fail, but the latest object model return by detector will re-initialize the tracker. Tracking an object on camera video approve our approach can work at 20fps with long-time robustness. DOI : http://dx.doi.org/10.11591/telkomnika.v12i2.4214 

    Research on Speed Control Methods and Energy-Saving for High-Voltage Transmission Line Inspection Robots along Cable Downhill

    No full text
    To ensure the safe operation of high-voltage transmission line inspection robots during downhill descents without power and extend their range after a single charge, this paper proposes an energy-saving speed control method for the inspection robot’s walking wheel motor on downhill slopes by integrating feedback braking and fuzzy PID control. By combining the parameter equation of the overhead catenary line and the structural characteristics of the overhead transmission line, this paper analyzes the relationship between the driving torque of the inspection robot’s wheels and the horizontal displacement along the transmission ground wire before and after descending. Based on this analysis, a speed control and energy recovery scheme is developed for the inspection robot, which combines front-wheel feedback braking with rear-wheel regenerative braking. The fuzzy PID method is utilized to adjust the PWM duty cycle to achieve energy-efficient speed control of the inspection robot’s rear walking wheels. Additionally, to improve the energy density and specific power of the robot’s energy storage unit, a composite power source consisting of lithium batteries and supercapacitors is employed to recover energy from the front walking wheels through feedback braking. The combined simulation results indicate that, compared to fuzzy control and PID control, fuzzy PID control better regulates the robot’s speed under varying slopes, wind resistance, and cable roughness. A downhill speed control system for the inspection of the robot’s walking wheel motor was designed, and its effectiveness was validated through simulated high-voltage line experiments. The fuzzy PID control was demonstrated to effectively maintain the rear walking wheel speed within the targeted range during downhill descents. When descending along a fixed 30° angle cable, the fuzzy PID control resulted in an increase of 5.28% and 14.26% in the state of charge (SOC) of the supercapacitor compared to PID control and fuzzy control, respectively. Moreover, when descending along fixed angle cables of 10°, 20°, and 30°, as well as a variable angle cable ranging from 30° to 0°, the SOC of the supercapacitor increased by 17.55%, 26.25%, 38.45%, and 31.29%, respectively. This demonstrates the effective absorption of regenerative braking energy during the robot’s downhill movement

    Phylogenetic surveys on the newt genus Tylototriton sensu lato (Salamandridae, Caudata) reveal cryptic diversity and novel diversification promoted by historical climatic shifts

    No full text
    Global climatic transitions and Tibetan Plateau uplifts are hypothesized to have profoundly impacted biodiversity in southeastern Asia. To further test the hypotheses related to the impacts of these incidents, we investigated the diversification patterns of the newt genus Tylototriton sensu lato, distributed across the mountain ranges of southeastern Asia. Gene-tree and species-tree analyses of two mitochondrial genes and two nuclear genes revealed five major Glades in the genus, and suggested several cryptic species. Dating estimates suggested that the genus originated in the early-to-middle Miocene. Under different species delimitating scenarios, diversification analyses with birth-death likelihood tests indicated that the genus held a higher diversification rate in the late Miocene-to-Pliocene era than that in the Pleistocene. Ancestral area reconstructions indicated that the genus originated from the northern Indochina Penin-sula. Accordingly, we hypothesized that the Miocene Climatic Transition triggered the diversification of the genus, and the reinforcement of East Asian monsoons associated with the stepwise uplifts of the Tibetan Plateau promoted the radiation of the genus in southeastern Asia during the Miocene-to-Pliocene period. Quaternary glacial cycles likely had limited effects on speciation events in the genus, but mainly had contributions on their intraspecific differentiations

    Phylogenetic surveys on the newt genus Tylototriton sensu lato (Salamandridae, Caudata) reveal cryptic diversity and novel diversification promoted by historical climatic shifts.

    No full text
    Global climatic transitions and Tibetan Plateau uplifts are hypothesized to have profoundly impacted biodiversity in southeastern Asia. To further test the hypotheses related to the impacts of these incidents, we investigated the diversification patterns of the newt genus Tylototriton sensu lato, distributed across the mountain ranges of southeastern Asia. Gene-tree and species-tree analyses of two mitochondrial genes and two nuclear genes revealed five major clades in the genus, and suggested several cryptic species. Dating estimates suggested that the genus originated in the early-to-middle Miocene. Under different species delimitating scenarios, diversification analyses with birth-death likelihood tests indicated that the genus held a higher diversification rate in the late Miocene-to-Pliocene era than that in the Pleistocene. Ancestral area reconstructions indicated that the genus originated from the northern Indochina Peninsula. Accordingly, we hypothesized that the Miocene Climatic Transition triggered the diversification of the genus, and the reinforcement of East Asian monsoons associated with the stepwise uplifts of the Tibetan Plateau promoted the radiation of the genus in southeastern Asia during the Miocene-to-Pliocene period. Quaternary glacial cycles likely had limited effects on speciation events in the genus, but mainly had contributions on their intraspecific differentiations

    The Political Role of the Russian Consulates in Mongolia in the Mongolian National Liberation Movement in the Early 20th Century

    No full text
    corecore