87 research outputs found

    Early-spring soil warming partially offsets the enhancement of alpine grassland aboveground productivity induced by warmer growing seasons on the Qinghai-Tibetan Plateau

    Get PDF
    Aims The response of vegetation productivity to global warming is becoming a worldwide concern. While most reports on responses to warming trends are based on measured increases in air temperature, few studies have evaluated long-term variation in soil temperature and its impacts on vegetation productivity. Such impacts are especially important for high-latitude or high-altitude regions, where low temperature is recognized as the most critical limitation for plant growth

    Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice

    Get PDF
    Pre-harvest sprouting (PHS) or vivipary in cereals is an important agronomic trait that results in significant economic loss. A considerable number of mutations that cause PHS have been identified in several species. However, relatively few viviparous mutants in rice (Oryza sativa L.) have been reported. To explore the mechanism of PHS in rice, we carried out an extensive genetic screening and identified 12 PHS mutants (phs). Based on their phenotypes, these phs mutants were classified into three groups. Here we characterize in detail one of these groups, which contains mutations in genes encoding major enzymes of the carotenoid biosynthesis pathway, including phytoene desaturase (OsPDS), ζ-carotene desaturase (OsZDS), carotenoid isomerase (OsCRTISO) and lycopene β-cyclase (β-OsLCY), which are essential for the biosynthesis of carotenoid precursors of ABA. As expected, the amount of ABA was reduced in all four phs mutants compared with that in the wild type. Chlorophyll fluorescence analysis revealed the occurrence of photoinhibition in the photosystem and decreased capacity for eliminating excess energy by thermal dissipation. The greatly increased activities of reactive oxygen species (ROS) scavenging enzymes, and reduced photosystem (PS) II core proteins CP43, CP47 and D1 in leaves of the Oscrtiso/phs3-1 mutant and OsLCY RNAi transgenic rice indicated that photo-oxidative damage occurred in PS II, consistent with the accumulation of ROS in these plants. These results suggest that the impairment of carotenoid biosynthesis causes photo-oxidation and ABA-deficiency phenotypes, of which the latter is a major factor controlling the PHS trait in rice

    Coupling Efficiency Measurements for Long-pulsed Solid Sodium Laser Based on Measured Sodium Profile Data

    Get PDF
    In 2013, a serial sky test has been held on 1.8 meter telescope in Yunnan observation site after 2011-2012 Laser guide star photon return test. In this test, the long-pulsed sodium laser and the launch telescope have been upgraded, a smaller and brighter beacon has been observed. During the test, a sodium column density lidar and atmospheric coherence length measurement equipment were working at the same time. The coupling efficiency test result with the sky test layout, data processing, sodium beacon spot size analysis, sodium profile data will be presented in this paper

    Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes

    Get PDF
    Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change

    Internal networking and organisational capability: towards a new perspective of the firm

    No full text
    As firms evolve in an ever-changing environment, new perspectives of firms are needed to explain management practices. Partnership - a relationship that emphasizes equality, shared responsibility and cooperation - and the concept of internal networking (which characterizes an organizational structure that is catalysed by and embedded in partnership relations), form the central theme of this paper in examining the success of an Asian high-tech giant. Given the existence of other similar Western models deploying the partnership concept, the paper also questions the importance of contextual factors in corporate management

    Effect of sodium triphosphate on particle size of heat‐induced whey protein concentrate aggregates

    No full text
    Thermal treatment has been utilized to improve the functional properties of proteins for many years. In this study, we aimed to investigate the effect of sodium triphosphate (Na5P3O10) on particle size and size distribution of heat‐induced whey protein concentrate (WPC ) aggregates under different processing conditions. The results showed that high Na5P3O10 level (>0.5%, w/w), long heating time (>15 min), and alkaline condition (pH 8–8.5) facilitated formation of large particles (>10 μm). The WPC aggregates with small‐to‐medium particle size (1–3 μm) that are suitable to be applied as a fat replacer were obtained by heating the WPC solution (8%, w/v) containing 0.4% (w/w) Na5P3O10 at 85°C for 5 min. We conclude that thermal treatment of whey protein concentrate added with Na5P3O10 can obtain whey protein products with different particle sizes for certain applications

    Analysis of Coordinated Development of Energy and Environment in China’s Manufacturing Industry under Environmental Regulation: A Comparative Study of Sub-Industries

    No full text
    In order to explore the impact of environmental regulation on the coordinated development of energy and the environment with the background of governance transition, we propose a three-stage integrated approach and use the panel data of China’s manufacturing industry 27 sub-sectors during the period of 2006–2015. In the first stage, according to the environmental pollution intensity, the manufacturing industry is divided into heavily polluting industry, moderately polluting industry, and lightly polluting industry. The second stage is employed the slacks-based measure (SBM)-undesirable method to study the sub-industries’ green energy-environmental efficiency under different environmental pollution intensities. Besides, the dynamic changes of technical innovation and efficiency among different industries are analyzed through the Malmquist productivity index. For the purpose of investigating the transmission mechanism of the Porter’s hypothesis and exploring the compound effects of environmental regulation and governance transition on green development, in the third stage, we use the panel data analysis to conduct more in-depth research on the relationship between environmental regulation, governance transition, and technical innovation. Results show that the highest average green energy-environmental efficiency is lightly polluting industry, which is 0.52, followed by the heavily polluting industry at 0.40, and the lowest is the moderately polluting industry, which is 0.32. By decomposing total factor productivity, heavily polluting industry is at the forefront of technical innovation. Panel data analysis results indicate that investment in research and development and governance transition could promote the growth of total factor productivity for manufacturing
    corecore