50,410 research outputs found

    Presymmetry beyond the Standard Model

    Full text link
    We go beyond the Standard Model guided by presymmetry, the discrete electroweak quark-lepton symmetry hidden by topological effects which explain quark fractional charges as in condense matter physics. Partners of the particles of the Standard Model and the discrete symmetry associated with this partnership appear as manifestations of a residual presymmetry and its extension from matter to forces. This duplication of the spectrum of the Standard Model keeps spin and comes nondegenerated about the TeV scale.Comment: 6 pages, 11 figures. To be published in the proceedings of DPF-2009, Detroit, MI, July 2009, eConf C09072

    Classification of finite irreducible modules over the Lie conformal superalgebra CK6

    Get PDF
    We classify all continuous degenerate irreducible modules over the exceptional linearly compact Lie superalgebra E(1, 6), and all finite degenerate irreducible modules over the exceptional Lie conformal superalgebra CK6, for which E(1, 6) is the annihilation algebra

    Modulation Doping near Mott-Insulator Heterojunctions

    Full text link
    We argue that interesting strongly correlated two-dimensional electron systems can be created by modulation doping near a heterojunction between Mott insulators. Because the dopant atoms are remote from the carrier system, the electronic system will be weakly disordered. We argue that the competition between different ordered states can be engineered by choosing appropriate values for the dopant density and the setback distance of the doping layer. In particular larger setback distances favor two-dimensional antiferromagnetism over ferromagnetism. We estimate some key properties of modulation-doped Mott insulator heterojunctions by combining insights from Hartree-Fock-Theory and Dynamical-Mean-Field-Theory descriptions and discuss potentially attractive material combinations.Comment: 9 pages, 9 figures, submitte

    Colossal negative magnetoresistance in dilute fluorinated graphene

    Get PDF
    Adatoms offer an effective route to modify and engineer the properties of graphene. In this work, we create dilute fluorinated graphene using a clean, controlled and reversible approach. At low carrier densities, the system is strongly localized and exhibits an unexpected, colossal negative magnetoresistance. The zero-field resistance is reduced by a factor of 40 at the highest field of 9 T and shows no sign of saturation. Unusual "staircase" field dependence is observed below 5 K. The magnetoresistance is highly anisotropic. We discuss possible origins, considering quantum interference effects and adatom-induced magnetism in graphene.Comment: 21 pages, 4 figures, including supplementary informatio

    Matrix Norms

    Get PDF
    In many situations it is very useful to have a single nonnegative real number to be, in some sense, the measure of the size of a vector or a matrix. As a matter of fact we do a similiar thing with scalars, we let jÀj represent the familiar absolute value or modulus of À. Fora vector x e: C , one way n of assigning magnitude is the usual definition of length, Il I 1/2 2 1/2 xl= = {jxij } , which is called the euclidean norm of x. In this case, length gives an overall estimate of the size of the elements of x. If llxll is large, at least one of the elements in x is large, and vise versa. There are many ways of defining norms for vectors and matrices. We will examine some of these in this paper

    Local density of states of a d-wave superconductor with inhomogeneous antiferromagnetic correlations

    Full text link
    The tunneling spectrum of an inhomogeneously doped extended Hubbard model is calculated at the mean field level. Self-consistent solutions admit both superconducting and antiferromagnetic order, which coexist inhomogeneously because of spatial randomness in the doping. The calculations find that, as a function of doping, there is a continuous cross over from a disordered ``pinned smectic'' state to a relatively homogeneous d-wave state with pockets of antiferromagnetic order. The density of states has a robust d-wave gap, and increasing antiferromagnetic correlations lead to a suppression of the coherence peaks. The spectra of isolated nanoscale antiferromagnetic domains are studied in detail, and are found to be very different from those of macroscopic antiferromagnets. Although no single set of model parameters reproduces all details of the experimental spectrum in BSCCO, many features, notably the collapse of the coherence peaks and the occurence of a low-energy shoulder in the local spectrum, occur naturally in these calculations.Comment: 9 pages, 5 figure

    Measuring Invisible Particle Masses Using a Single Short Decay Chain

    Full text link
    We consider the mass measurement at hadron colliders for a decay chain of two steps, which ends with a missing particle. Such a topology appears as a subprocess of signal events of many new physics models which contain a dark matter candidate. From the two visible particles coming from the decay chain, only one invariant mass combination can be formed and hence it is na\"ively expected that the masses of the three invisible particles in the decay chain cannot be determined from a single end point of the invariant mass distribution. We show that the event distribution in the log(E1T/E2T)\log(E_{1T}/E_{2T}) vs. invariant mass-squared plane, where E1TE_{1T}, E2TE_{2T} are the transverse energies of the two visible particles, contains the information of all three invisible particle masses and allows them to be extracted individually. The experimental smearing and combinatorial issues pose challenges to the mass measurements. However, in many cases the three invisible particle masses in the decay chain can be determined with reasonable accuracies.Comment: 45 pages, 32 figure

    Viscous Effects on Elliptic Flow and Shock Waves

    Full text link
    Fast thermalization and a strong buildup of elliptic flow of QCD matter as found at RHIC are understood as the consequence of perturbative QCD (pQCD) interactions within the 3+1 dimensional parton cascade BAMPS. The main contributions stem from pQCD bremsstrahlung 232 \leftrightarrow 3 processes. By comparing to Au+Au data of the flow parameter v2v_2 as a function of participation number the shear viscosity to entropy ratio is dynamically extracted, which lies in the range of 0.08 and 0.2, depending on the chosen coupling constant and freeze out condition. Furthermore, first simulations on the temporal propagation of dissipative shock waves are given. The cascade can either simulate true ideal shocks as well as initially diluted, truely viscous shocks, depending on the employed cross sections or mean free path, respectively.Comment: 7 pages, 8 figures, to appear in the proceedings of the 2008 Erice School on Nuclear Physics, Sicil
    corecore