20 research outputs found

    Hydrodynamic Performance of an Asymmetry OWC Device Mounted on a Box-Type Breakwater

    Get PDF
    To share the construction and maintenance cost, an asymmetric oscillating water column (OWC) device integrated with a pile-fixed box-typed offshore breakwater is considered experimentally and numerically. A fully nonlinear numerical wave tank is established and validated with the open source solver OpenFOAM. The effects of the width and draft of rear box, and the incident wave height on the wave energy conversion efficiency, reflection and transmission coefficients, and energy dissipation coefficient are examined. In addition, the superiority of the present coupling system, compared to the traditional box-type breakwater, is discussed. With well comparisons, the results show that the existence of the rear breakwater is beneficial for the formation of partial standing waves and further wave energy conversion. In the range of wave heights tested, the higher the incident wave height, the larger the energy absorption efficiency except for the short-wave regimes. Moreover, the OWC-breakwater coupling system can obtain a similar wave blocking ability to the traditional one, and simultaneously extract wave energy and decrease wave reflection

    Large Model Based Referring Camouflaged Object Detection

    Full text link
    Referring camouflaged object detection (Ref-COD) is a recently-proposed problem aiming to segment out specified camouflaged objects matched with a textual or visual reference. This task involves two major challenges: the COD domain-specific perception and multimodal reference-image alignment. Our motivation is to make full use of the semantic intelligence and intrinsic knowledge of recent Multimodal Large Language Models (MLLMs) to decompose this complex task in a human-like way. As language is highly condensed and inductive, linguistic expression is the main media of human knowledge learning, and the transmission of knowledge information follows a multi-level progression from simplicity to complexity. In this paper, we propose a large-model-based Multi-Level Knowledge-Guided multimodal method for Ref-COD termed MLKG, where multi-level knowledge descriptions from MLLM are organized to guide the large vision model of segmentation to perceive the camouflage-targets and camouflage-scene progressively and meanwhile deeply align the textual references with camouflaged photos. To our knowledge, our contributions mainly include: (1) This is the first time that the MLLM knowledge is studied for Ref-COD and COD. (2) We, for the first time, propose decomposing Ref-COD into two main perspectives of perceiving the target and scene by integrating MLLM knowledge, and contribute a multi-level knowledge-guided method. (3) Our method achieves the state-of-the-art on the Ref-COD benchmark outperforming numerous strong competitors. Moreover, thanks to the injected rich knowledge, it demonstrates zero-shot generalization ability on uni-modal COD datasets. We will release our code soon

    SPOP Promotes Ubiquitination and Degradation of the ERG Oncoprotein to Suppress Prostate Cancer Progression

    Get PDF
    The ERG gene is fused to TMPRSS2 in approximately 50% of prostate cancers (PrCa), resulting in its overexpression. However, whether this is the sole mechanism underlying ERG elevation in PrCa is currently unclear. Here we report that ERG ubiquitination and degradation are governed by the Cullin 3-based ubiquitin ligase SPOP and that deficiency in this pathway leads to aberrant elevation of the ERG oncoprotein. Specifically, we find that truncated ERG (ΔERG), encoded by the ERG fusion gene, is stabilized by evading SPOP-mediated destruction, whereas prostate cancer-associated SPOP mutants are also deficient in promoting ERG ubiquitination. Furthermore, we show that the SPOP/ERG interaction is modulated by CKI-mediated phosphorylation. Importantly, we demonstrate that DNA damage drugs, topoisomerase inhibitors, can trigger CKI activation to restore the SPOP/ΔERG interaction and its consequent degradation. Therefore, SPOP functions as a tumor suppressor to negatively regulate the stability of the ERG oncoprotein in prostate cancer

    pVHL suppresses kinase activity of Akt in a proline-hydroxylation-dependent manner

    Get PDF
    Activation of the serine-threonine kinase Akt promotes the survival and proliferation of various cancers. Hypoxia promotes the resistance of tumor cells to specific therapies. We therefore explored a possible link between hypoxia and Akt activity. We found that Akt was prolyl-hydroxylated by the oxygen-dependent hydroxylase EglN1. The von Hippel–Lindau protein (pVHL) bound directly to hydroxylated Akt and inhibited Akt activity. In cells lacking oxygen or functional pVHL, Akt was activated to promote cell survival and tumorigenesis. We also identified cancer-associated Akt mutations that impair Akt hydroxylation and subsequent recognition by pVHL, thus leading to Akt hyperactivation. Our results show that microenvironmental changes, such as hypoxia, can affect tumor behaviors by altering Akt activation, which has a critical role in tumor growth and therapeutic resistance

    Singularity theories and methods for characterizing mineralization processes and mapping geo-anomalies for mineral deposit prediction

    Get PDF
    In this paper, we show that geo-anomalies can be delineated for mineral deposit prediction according to singularity theories developed to characterize nonlinear mineralization processes. Associating singularity and geo-anomalies makes it possible to quantitatively study geo-anomalies with modern nonlinear theories and methods. This paper introduces a newly developed singularity analysis of nonlinear mineralization processes and nonlinear methods for characterizing and mapping geo-anomalies for mineral deposit prediction. Mineral deposits, as the products of singular mineralization processes caused by geo-anomalies, can be characterized by means of fractal or multifractal models. It has been shown that singularity can characterize the degree of geo-abnormality, and this has been demonstrated to be useful for mapping anomalies of undiscovered mineral deposits. The study of mineralization and mineral deposits from a nonlinear process point of view is a new but promising research direction. This study emphasizes the relationships between geo-anomalies and singularity, including singular processes resulting in singularity and geo-anomalies, the characterization of singularity and geo-anomalies and the identification of geo-anomalies for mineral deposit prediction. The concepts and methods are demonstrated using a case study of Sn mineral deposit prediction in the Gejiu mineral district in Yunnan, China

    Improving reservoir permeability by electric pulse controllable shock wave

    No full text
    Abstract Controllable shock wave (CWS) parameters such as amplitude, operating area and number of operations are easy to control and have received extensive attention as a potential new technology for reservoir permeability enhancement. Based on the continuous-discontinuous element method (CDEM) and considering the coupling mechanism of reservoir deformation, failure, pore seepage and fracture flow, a multiphysical field coupling model of reservoir permeability enhancement under CWS is proposed. Under the fluid–solid coupling condition, the formation and development dynamic process of reservoir fractures are obtained, and the change of reservoir permeability is also obtained. The compression fracture zone, tensile fracture zone and undamaged zone are formed around the wellbore. After repeated impact, the number of fractures is more sensitive to tectonic stress, the fracture aperture is more sensitive to reservoir strength. Different from hydraulic fracturing, a large number of fractures in different directions will appear around the main fracture after repeated impact, forming a complex fracture network similar to spider web, which may be beneficial to improve reservoir permeability. The permeability of reservoirs with different tectonic stresses and strengths increases nonlinearly and monotonicly with repeated impacts. Based on CDEM, the change of reservoir permeability with tectonic stress, strength and impact times is obtained, which is a nonlinear monotonic three-dimensional relationship. Based on that relationship, the parameters of CWS can be controlled to predict the change of reservoir permeability, such as peak pressure, duration, impact times, etc. Therefore, it can optimize the reservoir fracturing scheme and improve the reservoir fracturing efficiency, which has considerable practical significance in engineering

    Numerical simulation of phosphorus release from resuspended sediment

    No full text
    One of the main issues in environmental hydraulics is pollutant release from sediments. For instance, the strong affinity between phosphorus and sediment permits most of the phosphorus to be adsorbed on the surface of the sediment particles in rivers or lakes. Post sediment resuspension, phosphorus is desorbed from the sediment to the overlying water. The release of phosphorus from the resuspended sediment is an important process in the secondary pollution of water. Herein, a coupled mechanical model of the overlying water, sediment, and pollutant was established based on the experimentally gathered data. Two types of sediment with different adsorption and desorption characteristics were selected to simulate the process of sediment resuspension and phosphorus release under different hydrodynamic conditions. The simulation results were subsequently used to analyze the relationship between the flow field characteristics and phosphorus concentration, from which the relationships between velocity, particle volume fraction, turbulent kinetic energy, total phosphorus concentration, desorbed phosphorus concentration, and time were elucidated. Based on the results, phosphorus is rapidly released into the overlying water from the resuspended sediment, and it reaches a peak value in a short duration. Unlike the release process of non-adsorption pollutants, hydrodynamic conditions and sediment properties play a crucial role in the phosphorus release process. The turbulent kinetic energy rapidly increases with the flow velocity, whereas the desorbed phosphorus concentration exhibits a certain relationship with the particle volume fraction and turbulent kinetic energy. In particular, the turbulent kinetic energy increases the desorbed phosphorus concentration per unit time. Additionally, the time taken by the total phosphorus concentration to attain its peak value is closely related to the characteristics of the flow field, whereas the amount of phosphorus is closely related to sediment properties. Post sediment resuspension, the release of phosphorus shows the characteristics of a centralized and massive release, which suggests that the total phosphorus concentration in the overlying water would change in a short duration and cause secondary pollution in the water environment

    Research on phosphorus release from resuspended sediment under wind-induced waves in shallow water

    No full text
    Sediment-water interfaces are important interfaces for lakes, which are related to most environmental and ecological problems. Wind-induced waves cause secondary pollution via sediment resuspension. Since the coupling mechanism of water, resuspended sediments, and phosphorus affects the release of phosphorus (P) near the interface, a coupled model was explored for two sediment types with different adsorption-desorption capabilities to examine sediment resuspension and P release. The relationships among wind speed, wave characteristics, sediment distribution and P concentration were obtained. For different sediments, the unit sediment desorption release is negatively correlated with wind speed. When sediments are resuspended under low or moderate wind speed, the P concentration in the overlying water increases abruptly, hampering diffusion. P release exhibits the characteristics of concentrated release in a small region and changes the water environment rapidly

    Multiphysics coupling study of near-wellbore and reservoir models in ultra-deep natural gas reservoirs

    No full text
    Understanding the changes of the near-wellbore pore pressure associated with the reservoir depletion is greatly significant for the development of ultra-deep natural gas reservoirs. However, there is still a great challenge for the fluid flow and geomechanics in the reservoir depletion. In this study, a fully coupled model was developed to simulate the near-wellbore and reservoir physics caused by pore pressure in ultra-deep natural gas reservoirs. The stress-dependent porosity and permeability models as well as geomechanics deformation induced by pore pressure were considered in this model, and the COMSOL Multiphysics was used to implement and solve the problem. The numerical model was validated by the reservoir depletion from Dabei gas field in China, and the effects of reservoir properties and production parameters on gas production, near-wellbore pore pressure and permeability evolution were discussed. The results show that the gas production rate increases nonlinearly with the increase in porosity, permeability and Young's modulus. The lower reservoir porosity will result in the greater near-wellbore pore pressure and the larger rock deformation. The permeability changes have little effect on geomechanics deformation while it affects greatly the gas production rate in the reservoir depletion. With the increase in the gas production rate, the near-wellbore pore pressure and permeability decrease rapidly and tend to balance with time. The reservoir rocks with higher deformation capacity will cause the greater near-wellbore pore pressure

    Dynamic Modeling and Simulation of Quick-Setting Slurry with Spatiotemporal Rheological Properties

    No full text
    Abstract A major concern in underground infrastructures is how to sufficiently seal the area from water ingress. To achieve this, grout needs to be spread adequately in the surrounding fractures. Cement-based composite grouting is probably the best method for this purpose because of its lower costs and reduced environmental impacts. Chemical reaction accompanied by the flow is a prominent feature of cement-based composites. Rheological properties, especially yield stress and viscosity, are non-uniformly distributed in time and space. In this paper, the rheological properties of quick-setting slurry of cement-based composites were measured over time, and the rheology constitutive equation including time was established based on non-Newtonian fluids. Considering the rheological properties, the Lagrangian method was introduced to track their space–time distribution, and then a dynamic model of quick-setting slurry was established based on continuity equation and momentum equation. The relationship between time-varying rheological characteristics and flow field characteristics was obtained through a numerical simulation of equal pressure injection and equal flux injection. The simulation results were compared with the experimental results in the references, thereby verifying the reliability and accuracy of the model. Results show that the local erosion state and local sealing effect of grouting directly depend on the yield stress of different positions in the flow field. The yield stress of quick-setting slurry increases rapidly with time, which is more likely to affect the flow field, and the viscosity of the slurry has a small effect on the flow field
    corecore