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Abstract In this paper, we show that geo-anomalies can be delineated for mineral deposit prediction

according to singularity theories developed to characterize nonlinear mineralization processes. Associ-

ating singularity and geo-anomalies makes it possible to quantitatively study geo-anomalies with modern

nonlinear theories and methods. This paper introduces a newly developed singularity analysis of

nonlinear mineralization processes and nonlinear methods for characterizing and mapping geo-anomalies

for mineral deposit prediction. Mineral deposits, as the products of singular mineralization processes

caused by geo-anomalies, can be characterized by means of fractal or multifractal models. It has been

shown that singularity can characterize the degree of geo-abnormality, and this has been demonstrated

to be useful for mapping anomalies of undiscovered mineral deposits. The study of mineralization and

mineral deposits from a nonlinear process point of view is a new but promising research direction. This

study emphasizes the relationships between geo-anomalies and singularity, including singular processes

resulting in singularity and geo-anomalies, the characterization of singularity and geo-anomalies and the

identification of geo-anomalies for mineral deposit prediction. The concepts and methods are demon-

strated using a case study of Sn mineral deposit prediction in the Gejiu mineral district in Yunnan, China.
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1. Introduction

Delineating geo-anomalies to assist in finding mineral deposits has
been a common practice in the fields of mineral exploration and
mineral resource assessment. Studies on the relationship between
geo-anomalies and occurrences of mineral deposits conducted by
Zhao and his group in China since the late 1980s have led to new
ideas and approaches for mineral deposit studies and for mineral
resource quantitative assessments (Zhao and Chi, 1991; Zhao,
2002, 2007; Zhao et al., 2005). For example, the concepts of

mailto:qiuming@yorku.ca
http://dx.doi.org/10.1016/j.gsf.2010.12.003
http://www.elsevier.com/locate/gsf
http://dx.doi.org/10.1016/j.gsf.2010.12.003
http://dx.doi.org/10.1016/j.gsf.2010.12.003


Q. Cheng, P. Zhao / Geoscience Frontiers 2(1) (2011) 67e7968
geo-anomalies and methods have been successfully applied in
China for various types of mineral deposit predictions. Unlike the
anomaly concept applicable to exploration geochemistry and
geophysics, a geo-anomaly is referred to in Zhao (2002) as an area
with significant geological differences from its surroundings in
terms of factors such as composition, texture, structure and
genesis. Whereas anomalies defined in geochemistry and
geophysics can be delineated quantitatively with thresholds, some
geological anomalies may not be easily quantitatively defined due
to their complexity. Nevertheless, due to the differences between
geological anomalies and surrounding areas, anomalies can often
be identified through comprehensive geological, geochemical and
geophysical surveying and mapping. Thus, geo-anomaly recog-
nition methods can be employed in delineating target areas for
mineral exploration.

In addition to mapping geo-anomalies for mineral deposit
prediction purposes, studies of geo-anomalies are also beneficial
for characterizing the fundamental properties of mineralization
processes and mineral deposits. How do geo-anomalies occur?What
are the fundamental properties of geo-anomalies? What can the
dynamics of mineralization resulting in geo-anomalies? How are the
formation and spatial-frequency-temporal properties of geo-anoma-
lies be simulated? How are geo-anomalies mapped for mineral
deposit prediction? Answers to these questions are essential not only
for understanding the dynamics ofmineralization and quantifying the
spatial-frequency-temporal distributions ofmineral deposits, but also
for identifying geo-anomalies for mineral deposit prediction.

Recent studies have demonstrated that various types of
hazardous geo-processes, such as earthquakes, volcanoes, floods,
cloud formation, rainfall, hurricanes, landslides and mineralization
processes, often result in anomalous amounts of energy release or
mass accumulation that are generally confined to narrow intervals in
time or space (Cheng, 2007a). The above property of anomalous
amounts of energy release or mass accumulation is termed a singu-
larity, and these types of processes are considered as singular
processes (Cheng, 1999, 2007a). Singularity is a generic property of
nonlinear natural processes that often generate end products
depicting fractality or multifractality (Cheng, 2007b, 2007c; Cheng
Figure 1 Simplified geology of the Gejiu mineral district. Pink polygon

the Gejiu batholith; yellow polygons indicate limestone of the Gejiu For

mentary rocks, and dots indicate Sn mineral deposits.
and Agterberg, 2009). Hydrothermal processes in the Earth’s crust
can result in ore deposits characterized by high concentrations of
metals with fractal or multifractal properties (Mandelbrot, 1989;
Agterberg, 1995; Cheng, 2007d). The total amounts of ore and
metals in hydrothermal ore deposits often have Pareto tails
(Turcotte, 1997). Pareto distribution can be considered as an
extreme value distribution, which is an important subject in math-
ematical geosciences. An invited paper meeting (IPM) on “extreme
value statistics” was organized by the International Association for
Mathematical Geosciences (IAMG) during the 53rd International
Statistics Institute (53rd ISI). Two invited papers were presented at
the conference: one covers the concept and methods of geo-anom-
alies with application in China (Zhao andChen, 2001), and the other
introduces singularity and multifractal filtering techniques to
decompose anomalies from the background for mineral deposit
prediction (Cheng, 2001). A fundamental property of singular
processes is that their end products often show geo-abnormalities in
some aspects. The rest of this paper will discuss a case study of Sn
mineral deposit prediction and will demonstrate applications of
nonlinearmethods for the quantitative delineation of geo-anomalies
for mineral potential prediction.
2. Materials and data

The study area chosen was the Gejiu mineral district located in
southern Yunnan, approximately 200 km south of the city of
Kunming, the capital of Yunnan Province (Fig. 1). This area is
known for its world-class Sn mineral deposits and Sn production.
Geological units within the main study area consist primarily of
a sequence of PaleozoiceMesozoic sedimentary (Gejiu Formation
and other formations) and igneous rocks. Proterozoic low-grade
metamorphic sand-shale rocks are mainly distributed in the
southern part of the study area (Zhuang et al., 1996).

Two main types of igneous rocks were mapped: Paleozoic
volcanic rocks andMesozoic intrusive rocks. The former aremainly
basalts, including the widespread Ailaoshan basalts within the
extended study area (Zhuang et al., 1996). The intrusive Mesozoic
s distributed in the center of the study area indicate felsic intrusions of

mation; black lines represent faults, white areas represent other sedi-
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rocks are predominantly biotitic granitoid rocks including granite,
monzogranite and plagiogranite. Mafic and ultramafic intrusive
rocks are scattered throughout the study area. The Gejiu batholith is
a complex granitoid complex located in the center of the study area
with an outcrop area of about 450 km2. This intrusion has been
considered as one of the main controlling factors for Sn minerali-
zation because several large Sn mineral deposits are found near the
batholith. The main ore bodies formed in the Gejiu Formation,
which is dominated by limestone with minor dolomites.

The area has gone through a long history of tectonic and
complex structural activity, resulting in fault and fold systems at
various scales and in various orientations, as shown on the map
(Fig. 1). Fault systems control the general configuration of the
mineralization and distribution of ore bodies. The main trend of
mineralization in the central area is NNEeSSW, but the ore fields
are concentrated along the intersections of NNEeSSW and EeW
faults.

It has been generally accepted that Sn and Cu mineralization
are associated with Gejiu Formation sedimentary country rocks
and igneous bodies, particularly the Gejiu batholith, which were
intruded into folded limestone deposited during the Middle
Triassic. The enrichment of Sn, Cu and other metals occurred in
and near the contact zone between the granite and wall rock
through metamorphic, contact-metasomatic, and vein-filling
processes. Ore types found in the contact and wall rock zones
surrounding the batholiths include skarn, interlayered ores in the
wall rocks, vein-type ores in fractures, and placer ores on the
paleosurface.

The study area is covered by about 3800 evenly distributed
stream sediment samples at a 2 km � 2 km (4 km2) spatial
resolution. Samples were collected and analyzed with a density of
one mixed sample per 4 km2 area by the Chinese National
Geochemical Mapping Project as part of the Regional
Geochemistry National Reconnaissance (RGNR) Project initiated
in 1979 (Xie et al., 1997). For each sample, the concentrations of
39 geochemical elements and seven oxides were measured. For
demonstration purposes, the data used in this paper are
geochemical concentration values of six trace elements (Sn, Cu,
Pb, Zn, As and Cd). Further details on the sampling and analysis
of the stream sediment data can be found in Xie et al. (1997). The
trace elements and their associations with Sn mineralization in the
area were previously studied for mineral deposit predictions and
for environmental assessments (Cheng, 2007a; Cheng and
Agterberg, 2009; Cheng et al., 2009). The main objective of the
reuse of these data in the current study is to demonstrate various
new nonlinear concepts and models applicable to the character-
ization of mineralization and the mapping of geo-anomalies for
mineral deposit prediction.

3. Fundamental characteristics of nonlinear
geo-processes: singularity and geo-anomaly

3.1. Nonlinearity and power-law distribution

There are many types of nonlinear geo-processes that can cause
end products with nonlinear properties when changing temporal or
spatial scales. Geophysical and geochemical fields are used for
mapping and exploration purposes. The change rates of these
geophysical and geochemical quantities with changes of support
may provide information characterizing the nonlinear property of
geo-processes. For example, if a quantity (Q(t)) involved in
a dynamic system changes through time (t), then the change rate
of the quantity can be expressed as the first-order derivative dQðtÞ

dt if
the first-order derivative exists. For a simple linear system, the
change rate dQðtÞ

dt is related to the quantity Q(t) with a constant
decay rate t(a value >0), for example,

dQðtÞ
dt

Z� tQðtÞ ð1Þ

This equation indicates that the change rate of the quantity in
a dynamic system is proportional to the magnitude of Q with
a negative constant decay rate t. The solution of Eq. (1) can be
expressed as Q(t) Z ce�tt. This exponential function has the
excellent smooth property of having finite derivatives of any
orders. The high-order derivatives of Q(t) remain the same orig-
inal function Q(t) except for a constant; for example, the nth-order
derivative is tnQðtÞ. The dynamics governed by Eq. (1) usually
represent a system in a constant and uniform media so that the
change rate is exponentially related to the time. There are many
such systems in the geosciences, for example, rivers flowing in
simple drainage networks due to the gravity potential differences
of water heads and isotope decay rates in rock samples (which is
used for geological dating). However, if the media in which
a system is involved is heterogeneous for example, if a system
involves a decreasing change rate through time according to the
following equation,

dQðtÞ
dt

Z� t

t
QðtÞ ð2Þ

where the change rate is proportional to Q(t) with a variable decay
rate �t=t that decreases with increasing time, then, as time goes
on, the decay rate of the system becomes more rapid. The solution
of the system as expressed in Eq. (2) is a power-law function:
QðtÞZct�t . According to this function, the system approaches
infinity when the time is close to zero. As opposed to the expo-
nential function, the power-law function does not have a smooth
property when t/0. In fact, the function does not have any
positive-order finite derivatives when t/0, as shown below:

dnQðtÞ
dnt

Zð�1Þntð1þ tÞ/ðnþ tÞ
tn

QðtÞ ð3Þ

The power-law solution of System (2) becomes singular when
the time is too close to zero and when the actual system does not
converge at the point where t Z 0. As the system is usually
a stochastic system so that Eqs. (1) to (3) are statistically held to
be true, the actual system becomes chaotic or disordered (for
example, with random walking processes) when close to singu-
larity. This implies that not only the quantity but also the variances
of the quantity of the anomalies or disordered region must be
anomalously different from those in the background and ordered
region.

The above discussion is based on simple dynamic systems with
the temporal attribute t; similarly, we can discuss the spatial
aspects of a system with a spatial attribute. If we consider
mineralization as a nonlinear process and the anomalous element
concentration in rocks or other types of media as the result of
mineralization, denoting the concentration density value in small
set A (an area for a 2D problem), then the change rate of the
concentration due to a change of scale can be expressed as two
forms:

dhrðAÞi
dA

Z� thrðAÞi;rðA0ÞZr0 ð4Þ



Figure 3 Relationship between the exponential model and the

power-law model fitted to the concentration density values r[A(3)],

calculated as ppm/km2 within square windows with various window

sizes e by least squares method. (A) Data plotted on a normal scale

and (B) on a logelog scale.
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dhrðAÞi
dA

Z� t

A
hrðAÞi;rðA0ÞZr0 ð5Þ

where A is an areal set in a 2D space (spatial scale), r(A) is the
density of elements defined in set A, and t is the decay rate of the
dynamic system. Eqs. (4) and (5) can also be represented as 3D
forms if the 2D set A is replaced by a volume set. For convenience,
without a loss of generality, only the 2D system will be considered
as an example in the following discussions.

The solutions of the two systems governed by Eqs. (4) and (5)
can be obtained as follows:

rðAÞZrðA0Þe�tðA0�AÞ ð6Þ

rðAÞZrðA0Þ
�
A

A0

��t

ð7Þ

The exponential solution (6) from System (4) and the power-
law solution (7) from (5) show different properties, especially for
a very small area A. To demonstrate the relationships between the
models in (6) and (7), the concentration values of element As
(ppm) in stream sediment samples collected from the Gejiu
district are plotted as a map with a 2-km spatial resolution (seen in
Fig. 2). The patterns in Fig. 2 show that high values of As are
generally distributed in the eastern study area where several large
Sn mineral deposits are found. We chose one location labeled as
a green circle on the map in Fig. 2 to examine how the concen-
tration density value calculated within square windows changes
with window size. Fig. 3 illustrates the distribution of concen-
tration density values calculated with square windows of sizes
ranging from 2, 6 and 10 km to 26 km. The vertical axis represents
the values of concentration density (ppm/km2), and the horizontal
axis indicates the linear size of the windows (km). Dots represent
the actual data, solid lines are fitted by a least square method with
a power-law model, and dashed lines are fitted with an exponential
model. The results obtained from the least square fitting are
estimated as rðAÞZ332:43e�0:416 with correlation coefficient
R2 Z 0.98 and rðAÞZ212:77e�0:039e with R2 Z 0.801. The
Figure 2 Distribution of As values (ppm) in stream sediment samples with a sampling density of one mixed sample per 4 km2. Black triangles

represent Sn mineral deposits, and black lines represent faults. The green circle indicates a location for which (and the white square indicates

a window within which) the concentration values of As were examined for singularity analysis (for more details, see the text).
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power-law model better fits the data, as confirmed by the larger
correlation coefficient (R2 Z 0.98) for the power-law model than
that for the exponential model (R2 Z 0.801). Comparing these two
functions, we can see that the power-law function increases faster
than the exponential function when the window size becomes very
small. The power-law function does not converge, whereas the
exponential function shows a continuous and smooth curve when
A becomes very small. In other words, the power-law model
characterizes the singularity of the distribution of concentration
density, which tends to become anomalously high when the area
becomes infinitely small. In contrast, the exponential model only
shows a gentle and smooth increase at a rate of 2.8 ppm/km in this
example.

3.2. Density-area power-law model and generalized self-
similarity

It has been shown that power-laws might be a primary function for
describing singular processes. Scale invariance is a unique prop-
erty of power-law functions in which the type does not change
when the scale changes. This type of property corresponds to self-
similarity in geometry, and power-laws are the basic function of
fractal geometry and multifractal fields. Therefore, fractal and
multifractal modeling based on power-law functions provide
powerful tools to characterize the scale invariance of geo-
processes and geo-events. Multiple recent successes have been
reported with the application of fractal and multifractals in the
context of geocomplexity (Lovejoy et al., 2009). Although most
fractal models are used to deal with isotropic scale invariance,
several models have been investigated for modeling anisotropic
scale invariance. A multifractal model has been proposed on the
basis of extreme value distributions of 2D multifractal fields,
stating that the concentration value (C ) and the area enclosed by
the cutoff concentration value (A[>C]) follow a power-law rela-
tion (Cheng et al., 1994):
Figure 4 Distribution of log-transformed values (ppm) of Sn in strea

Smooth contour lines were created and classified using the breaks identifi

contours with values above 344 ppm, thick solid black lines represent val

6 ppm, and contours with values below 2 ppm are not shown here.
A½> C�fC�b ð8Þ

For a mineral district, Relation (8) may have several values of
exponents. The area (A) involved in Relation (8) can be of any shape
as long as the power-law relation in (8) holds true. Therefore, this
concentration-area model (C-A model) becomes one of the original
simple density-area models for characterizing anisotropic scale
invariance. To illustrate the concentration-area model (8), we used
a map with the same concentration values of Sn (ppm) in the stream
sediment samples as the As values in Fig. 2. The results are shown in
Fig. 4, where the colors represent the log-transformed values of Sn,
and the superimposed contours are identified by means of C-A, as
shown in Fig. 5. The plot in Fig. 5 shows that the values of C-A
relationships can be fitted by power-law models with different
exponents. Four classes of Sn values are grouped with three cutoff
values identified using straight line fitting by a least squares method.
Three cutoff values (2, 6 and 344 ppm) were estimated, and these
values separate the Sn values into four groups labeled as (I), (II), (III)
and (IV) in Fig. 5. Accordingly, three sets of contours were plotted to
represent the three groups of (I), (II) and (III). The contours in Group
IVare not shown here because this group represents background low
values less than 2 ppm. It can be seen in Fig. 4 that the contours in
Group I are of circular shape with a limited extension. Two large Sn
deposits are located within this group. The contours in Group II show
more complex shapes with two centers. Six mineral deposits are
located in this group. Two mineral deposits are located in the region
delineated by the contours inGroup III. The concentration values and
areas in these three ranges of values follow three different power-law
relations with different exponents, as �3.1, �1.57 and �0.79,
respectively. The slopes from I to III indicate the increase of singu-
larities towards the centers of the geo-anomalies. Different slopes
may also indicate some mixing of processes with various degrees of
intensity of abnormalities. The contours shaping the spatial distri-
butions of Sn in the area break up the values of the concentration-area
relationships. These types of distinction in terms of self-similarity can
be used to distinguish anomalous and background patterns.
m sediment samples. Black triangles represent Sn mineral deposits.

ed by means of the C-A plot shown in Fig. 5. White lines represent

ues from 6 to 344 ppm, thinner black lines indicate values from 2 to



Figure 5 C-A (concentration-area) plot showing the cumulative area versus the tin concentration value; the base of logarithms is e. Three

breaks at 2, 6 and 344 ppm separate the Sn values into four ranges; in three of these ranges, straight lines were fitted to the data by least squares

method. The parameters for the three straight lines are the following: (I) slope �3.1, intercept 26.6 and standard error 0.036; (II) slope �1.57,

intercept 15.2 and standard error 0.0027; and (III) slope �0.79, intercept 10.6 and standard error 0.0012. These breaks are used in Fig. 4 to classify

the contours into four groups.
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The idea of the C-A model was further extended to characterize
the spectral energy density-area relation in frequency domains
(Cheng et al., 1999):

Að� SÞfS�2d=b ð9Þ
where S[u] stands for the spectral energy density at wave number
vector u, A[�S] indicates the area in units of wave number with
a threshold above S, the symbol f stands for “proportional to”, b
is the anisotropic scaling exponent, and d is a parameter repre-
senting the degree of overall contraction (Cheng et al., 1999;
Cheng, 2004). As the shape of A involved in these models (C-A
and S-A) at different concentration levels (C ) or spectral energy
densities (S ) can be any self-similarly shaped set (such as
contours), these self-similar contours characterize the anisotropic
scale invariance of the density distribution. Thus, the exponent of
the power-law relation becomes an essential index that charac-
terizes the generalized self-similarity, implying that a geo-field
shows diversity in the spatial domain and self-similarity in
a special domain such as a Fourier domain (Cheng, 2004). A more
general formulation to represent the density-area relation can be
expressed as follows:

< r½UðAÞ�>Zc
ffiffiffi
A

p �Da ð10Þ
where r represents a type of density or quantity defined in a small
area (or volume) in a mineral district U(A) with size A, c is
a quantity independent of size A, and Da Z 2ea is the singularity
index (with a also known as the H€older exponent; Mandelbrot,
1989). The singularity index Da quantifies the degree of singu-
larity. The symbol <> stands for the expectation that power-law
relations usually hold true in the statistical sense. Instead of
a unique value of exponent Da, which would correspond to
a single fractal, the values of c and a vary in the mineral district
from place to place, corresponding to multifractals. Fractals are
usually referred to as a property of geometry or a single statistical
distribution, whereas multifractals are related to continuous fields
or complex patterns defined on geometric sets that themselves can
be fractals. From this perspective, multifractal models have more
applications in practice.

Although expressed as a density and area relationship, if
treating the energy and mass and the time and space as
exchangeable quantities, Model (10) can be adopted to represent
the energy densityetime relationship, which can be used to
describe the singularity of temporal systems such as earthquakes
and landslides.

3.3. Singularity and abnormality

Oneof thegenericproperties of thepower-law relation is its singularity:
when the scale becomes extremely small, some quantities derived from
the power-law relation approach infinity; for example, the density r

defined in Model (10) stays constant only if a has a value close to 2 or
DaZ 0; otherwise, ifa< 2 orDa> 0, the density approaches infinity,
and, if a> 2 orDa< 0, the density approaches zero. These properties
of the power-law Model (10) imply that at a location where normal
regional geological processes occurredwithout causing the enrichment
or depletion of the concentration values of certain elements in rocks or
other surface media, the concentration value density tends to be
statistically constant, independent of themeasuring area size. This is to
say that the element concentration values in the region are linearly
distributed. These types of regions correspond to geological back-
ground. In contrast, at other locations where mineralization occurred
and caused element enrichment and depletion, the concentration value
density is proportional to the measuring area size. This implies that the
element concentration values in the region are nonlinearly distributed.
These types of regions correspond to geo-anomalies. Therefore, the
power-law model can be used in many cases to characterize geo-
anomalies, and the value of Da quantifies the degree of abnormality
(Cheng, 2007c).

To demonstrate the concept and application of singularity
analysis, we created a combined map from the concentration
values of six elements (Sn, Cu, As, Pb, Zn and Cd) by means of
principal component analysis with a correlation coefficient matrix
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model. More information on the general use of principal compo-
nent analysis (PCA) and some new extensions of PCA can be
found in many references, such as Cheng et al. (2006). The first
principal component reflects the combination of all six elements
with evenly distributed positive loading. This element combina-
tion reflects the main elements association with Sn and Cu
mineralization. The scores of the six elements on the first principal
component were calculated and are shown in Fig. 6. The patterns
in this figure generally show high values in the area of the Gejiu
Formation and around the Gejiu batholith that are shown as
transparent polygons. Therefore, the combined geochemical
patterns represent the overlapped contributions of various
geological features and processes. Square windows with various
sizes ranging from 2 to 6 km up to 26 km were applied to calculate
the singularity index a, and the results are shown in Fig. 7. More
detailed information on the calculation of singularity can be found
in Cheng (2007a). The results show that the areas around the mine
sites correspond to strong Sn, As, Cu, Pb. Zn and Cd anomalies.
Anomalies in the western part are generally weak. Clearly, the
distribution of these elements cannot be directly used to delineate
anomalies in the western part. The patterns of a values calculated
from the combined map of these elements illustrate that the areas
with a values < 2 are spatially coincident with the locations of
most known Sn deposits. In addition, a number of anomalies are
delineated in the western part of the study area. The results
indicate that the areas with a values from 1.5 to 1.925 have the
optimum spatial correlation between anomalies and known
mineral deposits (Cheng, 2007a). This example demonstrates that
mapping singularity from a geochemical map can provide useful
information for geo-anomaly identification.

3.4. Diversity and generalized self-similarity

Diversity is a common property of nature. Mineralization also
often shows diversity in terms of factors such as genesis types,
commodities and ore bodies. Mineralization is usually associated
with multiple factors such as the sources of ore materials,
Figure 6 Scoring map of the first principle component showing the sp

Transparent polygons located in the middle of the figure indicate intrusive

mineral deposits.
interactions with country rocks and the formation environment, to
name a few. These types of factors often lead to diverse miner-
alization and multiple types of mineral deposits. However, the
generic property of the same type of mineralization often shows
self-similarity. Diversity and self-similarity are two end members
of a spectrum, but are these two properties totally distinct? In fact,
diversity and self-similarity are just two end members of the
spectrum containing generalized self-similarity in the middle.
Generalized self-similarity represents a phenomenon in which the
system shows diversity in one space but self-similarity in the other
“genetic” space. For example, in the space domain, many species
(including humans and plants) show diversity, as in different
species, different colors, different shapes and so on, but these
species have their own DNA series in their generic domains.

Diversity and self-similarity are fundamental properties of
complex mineralization. If the power-law can be used as a genetic
model to characterize mineralization as a singular process, the
scale invariance, a unique property of the power-law function,
guarantees some types of self-similarities of mineralization. Based
on the power-law function, the quantities measured for two
different scales can be associated by a scale transformation:

< r½UðA1Þ�>ZðA1=A2Þa=2�1
< r½UðA2Þ�i ð11Þ

In order words, the value for one scale can be transformed from
the value for another scale according to a scale transformation
(Cheng, 1999). Typical examples of power-law relationships
include geophysical potential fields such as magnetic and gravity
fields, which possess self-similarity with respect to the distance
(or height) between the sensor and the source of the geological
body. For example, the magnetic and gravity fields at any height
above the ground can be calculated from corresponding fields
measured on or near the ground by an upward continuation
transformation (Cheng and Xu, 1998). Another example involves
the geochemical halos associated with and around ore bodies. As
the distance from an ore body increases, the intensity of the halo
statistically decreases. In addition to intensity changes, the
assemblages of minerals or elements may also gradually change.
atial distribution of multiple elements of Sn, Cu, As, Pb, Zn and Cd.

bodies, solid black lines represent faults, and white dots represent Sn



Figure 7 Singularity obtained from the anomalies in Fig. 6, with a positive value of 5 added so that the map has positive values. Singularity was

calculated with square windows sized within 26 km.
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This is the principle behind identifying primary geochemistry
halos to assist in allocating ore bodies. The zoning of halos
identified in terms of both intensity and element associations is
useful for reducing target areas to find ore bodies. In field
observations, geologists seek self-similarity between structures at
different scales, and these scale relationships can be used to infer
large-scale structures by examining the small-scale structures
observed on specimens and even under microscopes.

The patterns represented at two different scales look similar if
they are associated with scale transformation or possess a scale
invariance property. Recent studies have demonstrated that self-
similarity can be characterized by more complex anisotropic and
nonlinear scale transformations; for example, self-affine trans-
formation can be applied, corresponding to self-affinity (stratifi-
cation), and even more complex transformations such as GSI
(generalized scale invariance transformation; Schertzer and
Lovejoy, 1987) and irregular contour-based methods (Cheng,
2007d) can be applied. These types of properties show self-simi-
larity characterized as a power-law in a special domain (not the
space domain), but diversity in the space domain can be named
generalized self-similarity (Cheng, 2007b). The identification of
generalized self-similarity is useful for the separation of anoma-
lies according to the distinctive generalized self-similarity
observed in other domains such as the Fourier Domain and Eigen
Domain. Several power-law models, including S-A (Cheng et al.,
1999) and N-l (Cheng, 2005), have been developed in these
domains to separate anomalies for mineral resource assessments.

To apply the power spectral energy density-area model (S-A) to
decomposing mixing patterns, the map in Fig. 6 was converted into
a frequency domain by means of fast Fourier transformation. Two
components (the power energy density and phases) were obtained
by Fourier transformation. The former is shown in Fig. 8A. On the
power spectral energy plane, various thresholds of power spectral
energy density were set, and the areas enclosed with the thresholds
were plotted on a log-log plot (Fig. 8B). Two straight lines were
fitted to the data by least squares method. These two lines separate
the values into two ranges with the cutoff value of SZ 1919, where
the distinct scaling properties of the S-A relation are maintained in
each. The slopes of these two straight lines are significantly
different, indicating that the power energy density values show
significantly different self-similarity attributes. The cutoff value of
S Z 1919 was used to define two filters: one consists of wave
numbers with S � 1919 (as the anomaly filter), and one uses
S > 1919 (as the background filter). The shapes of the two filters
are irregular and maintain the anisotropic properties and spatial
structure of the geochemical pattern. Within these two filters, S and
A follow two distinct power-law relations, each with its own
exponent, implying that the signals in these ranges are self-similar.

Applying the two filters with ranges of S defined as anomaly
and background in Fig. 8B to the fast Fourier-transformed func-
tions and then converting them back to the spatial domain using
inverse Fourier transformation, two decomposed maps were
created and are shown in Fig. 9A and B. Fig. 9A represents the
background component of the geochemical landscape of the
multiple elements, which generally highlights two sub-regions
separated in the middle of the Gejiu batholith; the eastern region
shows high background, and the western region shows low
background. Fig. 9B shows the anomalies located not only in the
eastern region (coinciding with known mineral deposits), but also
in the western region. The anomalous areas shown in Fig. 9B are
either spatially in good agreement with the locations of known
mineral deposits or are present along faults or around fault
intersections. The decomposed anomalous and background
patterns shown in Fig. 9A and B are explicitly different, each
corresponding to a distinct self-similarity in the Fourier domain
characterized by a different power-law model. This example
shows that the generalized self-similarity principle can be used to
develop fractal filtering techniques for decomposing mixing
patterns, which is an essential task for mineral exploration.

4. Spectrum and multifractality of singular
mineralization

It has been demonstrated that the power-law is a fundamental model
capable of describing the density-area relationships involved in
a geochemical landscape affected by mineralization. The exponent
of such power-laws is a key parameter that is often related to the



Figure 8 (A) Spectrum energy density map (S ) calculated using fast Fourier transformation. Center of the map indicates the origin of the wave

number. (B) S-A plot showing the relationship between power energy density S and area A. The meaning of S and A are explained in the text. The

solid lines are fitted by least squares method. The break point separating the two straight lines is estimated as S Z 1919.
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dimension of the sets or the fractal density (Cheng, 2007b).
Dimensions are important quantities of nature, including geometries
and the fields defined on geometry. Objects can be classified into
groups according to their dimensions as points, lines, polygons and
volumes, and, in addition, objects can be classified based on non-
integer dimensions. Objects with the same dimensions depict
similar properties, whereas those with different dimensions often
show different properties. More generally, measures or fields
defined for objects with different dimensions are also distinguish-
able. This is themain principle for the utilization of the concepts and
methods of singularity and generalized self-similarity in anomaly
identification and decomposition. So far, we have introduced only
the processes applied to maps created for either single elements or
group elements. In mineral exploration, however, multiple factors
and maps are often needed to comprehensively delineate prospec-
tive areas for mineral prospecting. Geo-anomalies often correspond
to other aspects of anomalies such as geochemical and geophysical
anomalies due to chemical and physical property differences
between the geo-anomalies and background. The idea and model of
singularity can be extended to dealwithmultiple geo-anomalies. For
example, the posterior probability of a unit area containing mineral
deposits was used to represent multiple geo-anomalies from the
point of view of multiplicative cascade processes (Cheng, 2008).
Multiplicative cascade processes are nonlinear processes common
in geosciences that can create end products with multi-scale
singularities following multifractal distribution (Agterberg, 2005).
Some mineralization processes possess the property of multiplica-
tive cascade processes, each causing the redistribution of elements
in the crust, with some areas being depleted and others enriched (de
Wijs, 1951; Schertzer et al., 1997). The amount of metal in a given
area of the mineralization domain may show a power-law distri-
bution related to the size of the area. Singularity is a natural property



Figure 9 Decomposed geochemical maps obtained by using a fractal filtering technique. (A) Background component obtained by the fractal

filter defined as S > 1919; (B) anomalies obtained by the fractal filter defined as S � 1919, from Fig. 8B.
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of mineralization, which involves the enrichment and depletion of
ore and associated elements in the Earth’s crust as well as in other
relevant secondary media such as tills, soils, lake and stream sedi-
ments, humus and the vegetation surrounding mineral deposits.
Mapping such singularities is an effective way to delineate areas
favorable for the occurrence of mineral deposits and to estimate the
likelihood of the presence of mineral resources in a given area. If we
define the chance of a unit area containingmineral deposits as a type
of density O(D), where D indicates deposits and O indicates the
standard for the Odds of D, then the variability of such chance may
also show singularity. Chance O(D) is related to probability P(D) by
OZ P/(1eP) or PZO/(1þO). Therefore, the probability of a unit
area containingmineral deposits can also be used to characterize the
variability in the chance of havingmineral deposits. The probability
might be easy to understand and interpret for geologists. If a unit
area is randomly selected from a district without considering the
property of the unit area, then the probability of such a unit area
containing deposits is called the prior probability. The probabilities
of unit areas selected from certain areas with some conditions are
called posterior probabilities. One can map the posterior
probabilities by combining multiple maps related to the location of
mineral deposits with various integration models such as weights of
evidence, logistic regression, fuzzy logic or neural networks
(Bonham-Carter, 1994). This is an essential task in the quantitative
prediction of mineral deposits and in mineral resource quantitative
assessment. Such a predictive map can assist the spatial decision-
making in mineral exploration and mineral resource planning. The
formulation of the such processes can be expressed as P(D) Z P
(DjAB.), where the posterior probability is a function of multiple
maps (A and B, etc.) that are prepared to predict mineral deposits.
Adding each of these maps (evidence layers) will reduce the study
into small areas, each with unique conditions of evidence, and the
posterior probability of these small areas can be updated. These
processes eventually lead to a final posterior probability map, on
which some small areas delineated by combining multiple patterns
positively associated with the location of mineral deposits will have
very high posterior probabilities (much higher than the prior prob-
ability). In contrast, most areas delineated with negatively associ-
ated patterns will show very low posterior probabilities (much lower
than the prior probability). Based on the posterior probability map
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created by combining multiple geo-evidence layers, various power-
law models can be applied to characterize the singularity of the
posterior probability map.

To demonstrate the application of data integration processes
for creating posterior probability maps, we combine the following
four layers of patterns to map the posterior probability of Sn
mineral deposits in the Gejiu district. These four layers (Cheng
et al., 2009) are: (1) the carbonate Gejiu Formation labeled as
the yellow patterns in Fig. 1; (2) the 6-km buffer zones around the
intersections of three groups of faults (faults are shown as black
lines in Fig. 1); (3) local geochemical anomalies extracted by
principal component analysis applied to local singularity indices
calculated for the elements Sn, As, Zn, Pb, Cu and Cd (results not
shown); and (4) regional geochemical anomalies (Fig. 9B)
extracted by the S-A fractal filter method. More detailed infor-
mation on the definition of the four binary layers can be found in
Cheng et al. (2009). Each of these four information layers divides
the study area into two subclasses representing favorable and
unfavorable regions for the prediction of mineral deposits. The
final posterior probability map created by combining these four
layers using the weights of evidence method is shown in Fig. 10A.

More evidence layers can be added to generate more detailed
posterior probability maps. These types of maps show singularities
in some places that have high posterior probabilities within very
small areas, which can be characterized by density (posterior
probability)earea fractal relations. The most interesting areas are
Figure 10 (A) Posterior probability map created by means of a weigh

showing the relationship between the posterior probability and the area ab
those with high posterior probabilities, but no known discovered
mineral deposits. Areas with high posterior probabilities can be
considered as multiple geo-anomalies that must show strong
singularities. For example, high posterior probabilities are plotted
against the area of each combination of evidential layers in
Fig. 10B. The horizontal axes represent the log-transformation of
the probability of the area of classes with posterior probabilities
above a threshold; the vertical axes represent the log-trans-
formation of the posterior probability. The result shows a power-
law relation between the cumulative area and the cutoff value of
posterior probability. From the power-law relationship, a singu-
larity index as a Z 0.93 < 2 or Da Z 2e0.93 Z 1.07 was
estimated, and this value implies a strong enrichment of the
posterior probability at the peaks when the size of area G
decreases.

5. Nonlinear methods for information extraction
and information integration required for the
quantitative assessment of mineral resources

Three fundamental properties of mineralization (geo-anomaly,
mineral diversity and mineral deposit spectrum) have been
considered for a so-called “three-component” mineral resource
assessment method (Zhao, 2002). From the point of view of
multifractal-based nonlinear theory, these three aspects also
ts of evidence method applied to the four evidential layers. (B) Plot

ove the cutoff value of posterior probability.



Figure 11 Flowchart showing the concepts of geo-anomaly and singularity and the methods for information processing and mineral resource

prediction.
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represent the fundamental properties of nonlinear processes,
which can be characterized using multifractal modeling of, for
example, the singularity, generalized self-similarity and fractal
spectrum. These three components of mineralization must be
considered for mineral resource assessments characterizing the
fundamental properties of mineralization, whereas singularity
theory and related multifractal models provide quantitative solu-
tions to quantify these properties of mineralization and are
essential for mineral deposit predictions and mineral resource
quantitative assessments. In addition, the nonlinear singularity
theory emphasizes the dynamics of mineralization and naturally
associates the dynamics and products of mineralization. Further-
more, these nonlinear models can be applied to quantitatively
processing geo-information to identify anomalies, decompose
mixed anomalies and evaluate the association between anomalies
and mineral deposits. The associations between the “three
components” and “3S” (singularity, generalized self-similarity,
multifractal spectrum) for mineral resource quantitative assess-
ments and for mineral deposit predictions can be illustrated in the
flowchart (Fig. 11). The singularity concepts and its related
mathematical models have been developed and applied to mineral
potential mapping and have especially proved to be effective for
the integrated prediction of mineral resources in covered areas or
of mineral deposits buried at significant depths. Singularity
mapping provides a powerful tool to extract weak anomalies either
caused by buried sources or affected by covers. Generalized self-
similarity methods such as the S-A method can be used to
decompose complex anomalies with various backgrounds, and
data integration methods and the principles of multiplicative
cascade processes (such as the weights of evidence method) can
be used to fuse diverse geo-evidential layers with unbalanced or
incomplete informatics between model areas and predicting areas
or between outcropped areas and covered areas. These techniques
and models have been implemented in GeoDAS, a specialized GIS
that has been widely applied in the mineral industry, including in
various national projects on mineral potential prediction and
mineral resource assessments in China.
6. Conclusions

Geo-anomalies, a fundamental characteristic of mineralization
processes, can be quantitatively characterized by means of singu-
larity. Nonlinear models and methods related to singularity can
provide powerful tools for the quantification of the characteristics of
geo-anomalies and for the identification of geo-anomalies to
delineate target areas for mineral exploration. The local singularity
analysis method can be effectively employed to map geo-anomalies
to delineate favorable areas for single geo-variables of undiscovered
mineral deposits. The new singularity model in conjunction with
data (map) integration processes provides a tool to map posterior
probabilities by combining multiple geo-variables (evidence). Data
integration treated as a generalized form of multiplicative cascade
processes can generate posterior probabilities with singularity,
which can be characterized by a density-area power-law model. A
generalized self-similarity principle can be applied to separate
mixing anomalies to represent different background geo-processes
and metallogenic processes. Fractal spectra represented by various
power-law models such as the concentration-area model, number-
size model, grade-tonnage model and posterior probability model,
can be utilized to characterize geo-anomalies and for the purposes of
mineral deposit prediction. Although introducing singularity and its
related nonlinear theories and methods into the study of geo-
anomalymaynot completely cover the scope of geo-anomaly theory
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in mineral resource assessment, the integration of geo-anomalies
and singularity demonstrates that modern nonlinear theory may
provide new directions for further geo-anomaly studies.
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