193 research outputs found
The Discrete-Time Bulk-Service Geo/Geo/1
This paper deals with a discrete-time bulk-service Geo/Geo/1
queueing system with infinite buffer space and multiple working vacations. Considering an early arrival system, as soon as the server empties the system in a regular busy period, he leaves the system and takes a working vacation for a random duration at time n. The service times both in a working vacation and in a busy period and the vacation times are assumed to be geometrically distributed. By using embedded Markov chain approach and difference operator method, queue length of the whole system at random slots and the waiting time for an arriving customer are obtained. The queue length distributions of the outside observer’s observation epoch are investigated. Numerical experiment is performed to validate the analytical results
Myocardial Fibrosis in the Pathogenesis, Diagnosis, and Treatment of Hypertrophic Cardiomyopathy
Hypertrophic cardiomyopathy (HCM) is a type of hereditary cardiomyopathy caused by
gene mutation. Its histological features include cardiomyocyte hypertrophy and disarray
as well as myocardial fibrosis. Gene mutation, abnormal signal transduction, and abnormal
energy metabolism are considered the main mechanisms of myocardial fibrosis. There
is a strong correlation between myocardial fibrosis and the occurrence, development,
and prognosis of HCM. We review the application of myocardial fibrosis in the diagnosis
and treatment of HCM, focusing on research progress and the application of magnetic
resonance imaging on the basis of the characteristics of fibrosis in the diagnosis
and prognosis of HCM.
</p
Atmospheric nitrogen deposition in the Yangtze River basin: spatial pattern and source attribution
The Yangtze River basin is one of the world's hotspots for nitrogen (N) deposition and likely plays an important role in China's riverine N output. Here we constructed a basin-scale total dissolved inorganic N (DIN) deposition (bulk plus dry) pattern based on published data at 100 observational sites between 2000 and 2014, and assessed the relative contributions of different reactive N (Nr) emission sectors to total DIN deposition using the GEOS-Chem model. Our results show a significant spatial variation in total DIN deposition across the Yangtze River basin (33.2 kg N ha−1 yr−1 on average), with the highest fluxes occurring mainly in the central basin (e.g., Sichuan, Hubei and Hunan provinces, and Chongqing municipality). This indicates that controlling N deposition should build on mitigation strategies according to local conditions, namely, implementation of stricter control of Nr emissions in N deposition hotspots but moderate control in the areas with low N deposition levels. Total DIN deposition in approximately 82% of the basin area exceeded the critical load of N deposition for semi-natural ecosystems along the basin. On the basin scale, the dominant source of DIN deposition is fertilizer use (40%) relative to livestock (11%), industry (13%), power plant (9%), transportation (9%), and others (18%, which is the sum of contributions from human waste, residential activities, soil, lighting and biomass burning), suggesting that reducing NH3 emissions from improper fertilizer (including chemical and organic fertilizer) application should be a priority in curbing N deposition. This, together with distinct spatial variations in emission sector contributions to total DIN deposition also suggest that, in addition to fertilizer, major emission sectors in different regions of the basin should be considered when developing synergistic control measures
A Review of Factors Influencing the Preparation of Bigels and Its Application in Food Field
Bigels are a new type of biphase system produced by the combination of hydrogel and organogel (oleogel), which have the characteristics of both aqueous and organic phases. Bigels exhibit superior performance to single-component gels, with the advantages of being able to deliver both hydrophilic and hydrophobic substances, ease of preparation, excellent spread ability, good physical stability, and long shelf life. In recent years, bigels have been of wide concern, and more and more studies have shown that bigels have a wide application prospect in the field of foods. This paper briefly reviews the structure of bigels, the effects of several major factors in the preparation of bigels such as the type and concentration of gelling agent, oleogel/hydrogel ratio and homogenization conditions on the physicochemical properties of bigels. It also explores the application of bigels in bioactive compound delivery, 3D food printing, fat substitution, and other aspects in the field of food industry. This review will contribute to further research and application of bigels in the food industry
Meta-analysis of structural and functional alterations of brain in patients with attention-deficit/hyperactivity disorder
BackgroundA large and growing body of neuroimaging research has concentrated on patients with attention-deficit/hyperactivity disorder (ADHD), but with inconsistent conclusions. This article was intended to investigate the common and certain neural alterations in the structure and function of the brain in patients with ADHD and further explore the differences in brain alterations between adults and children with ADHD.MethodsWe conducted an extensive literature search of whole-brain voxel-based morphometry (VBM) and functional magnetic resonance imaging (fMRI) studies associated with ADHD. Two separate meta-analyses with the seed-based d mapping software package for functional neural activation and gray matter volume (GMV) were carried out, followed by a joint analysis and a subgroup analysis.ResultsThis analysis included 29 VBM studies and 36 fMRI studies. Structurally, VBM analysis showed that the largest GMV diminutions in patients with ADHD were in several frontal-parietal brain regions, the limbic system, and the corpus callosum. Functionally, fMRI analysis discovered significant hypoactivation in several frontal-temporal brain regions, the right postcentral gyrus, the left insula, and the corpus callosum.ConclusionThis study showed that abnormal alterations in the structure and function of the left superior frontal gyrus and the corpus callosum may be the key brain regions involved in the pathogenesis of ADHD in patients and may be employed as an imaging metric for patients with ADHD pending future research. In addition, this meta-analysis discovered neuroanatomical or functional abnormalities in other brain regions in patients with ADHD as well as findings that can be utilized to guide future research
Research Progress on Antagonistic Antimicrobial Prevention and Control of Grape Postharvest Diseases
During the storage and transportation of grapes after picking, diseases occurs generally, including gray mold, aspergillus rot, rhizopus rot, penicillium rot, etc., which seriously affect its production and commodity value. At present, the control of postharvest diseases of grape still depends on chemical control. Long-term application of chemical fungicides can lead to pesticide residues, environmental pollution, harm to human health, and enhance the drug resistance of pathogenic fungal. Using antagonistic bacteria to control postharvest diseases of grape is a green, environmental and safe method instead of chemical fungicides. In this paper, the postharvest infection diseases and symptoms of grape, the source, application effect and their mechanism of action of antagonistic bacteria, the combination of antagonists with other methods to enhance the biocontrol effect are introduced. The prospect of controlling postharvest diseases of grape by antagonistic bacteria is also discussed
Effective elastic properties of a van der Waals molecular monolayer at a metal surface
Adsorbing anthracene on a Cu(111) surface results in a wide range of complex and intriguing superstructures spanning a coverage range from 1 per 17 to 1 per 15 substrate atoms. In accompanying first-principles density-functional theory calculations we show the essential role of van der Waals interactions in estimating the variation in anthracene adsorption energy and height across the sample. We can thereby evaluate the compression of the anthracene film in terms of continuum elastic properties, which results in an effective Young\u27s modulus of 1.5 GPa and a Poisson ratio approximate to 0.1. These values suggest interpretation of the molecular monolayer as a porous material-in marked congruence with our microscopic observations
Orchestration of the stilbene synthase gene family and their regulators by subgroup 2 MYB genes
The control of plant specialised metabolism is exerted by transcription factors and co-regulators acting on cis-regulatory DNA sequences of pathway-structural genes, determining when, where, and how metabolites are accumulated. A particularly interesting case for studying the transcriptional control of metabolism is represented by stilbenoids, produced within the phenylpropanoid pathway, as their ability to inhibit infection by coronaviruses MERS-CoV and SARS-CoV has been recently demonstrated in vitro. Integrative omic studies in grapevine (Vitis vinifera L.), including gene co-expression networks, have previously highlighted several transcription factors (TFs) from different gene families as potential modulators of stilbenoid accumulation, offering an ideal framework for gene function characterisation using genome-wide approaches. In the context of non-model plant species, DNA affinity purification sequencing (DAP-Seq) results a novel and potentially powerful tool for the analysis of novel uncharacterised regulators, however, it has not yet been applied in fruit crops. Accordingly, we tested as a proof-of-concept the binding of two previously characterised R2R3-MYB TFs to their known targets of the stilbene pathway, MYB14 and MYB15, obtaining 5,222 and 4,502 binding events assigned to 4,038 and 3,645 genes for each TF, respectively. Bound genes (putative targets) were overlapped with aggregated gene centred co-expression networks resulting in shared and exclusive High Confidence Targets (HCTs) suggesting a high, but not complete, redundancy. Our results show that in addition to the previously known but few STS targets, these regulators bind to almost half of the complete STS family in addition to other phenylpropanoid- and stilbenoid-related genes. We also suggest they are potentially involved in other processes such as the circadian rhythm or the synthesis of biotin. We searched the activated transcriptomes of transiently MYB15-overexpressing grapevine plants and observed a large activation of its high confidence targets, validating our methodological approach. Our results also show that MYB15 seems to play a role in regulating other stilbenoid-related TFs such as WRKY03.This work was supported by Grant PGC2018-099449-A-I00 and by the Ramón y Cajal program grant
RYC-2017-23645, both awarded to J.T.M. and to the FPI scholarship PRE2019-088044 granted to
L.O. from the Ministerio de Ciencia, Innovaci´on y Universidades (MCIU, Spain), Agencia Estatal de
Investigaci´on (AEI, Spain), and Fondo Europeo de Desarrollo Regional (FEDER, European Union).
C.Z. is supported by China Scholarship Council (CSC) no. 201906300087. This article is based upon
work from COST Action CA 17111 INTEGRAPE, supported by COST (European Cooperation in
Science and Technology). Data has been treated and uploaded in public repositories according to
the FAIR principles.N
Time-resolved x-Ray fluorescence analysis of element distribution and concentration in living plants: an example using manganese toxicity in cowpea leaves
The distribution and concentration of nutrients and contaminants affect almost every metabolic process in plants but analytical limitations have hindered the determination of microscopic changes over time within living plant tissues. We developed a novel method using synchrotron-based micro X-ray fluorescence (μ-XRF) that, for the first time, allows quantification of the spatial and temporal changes of multiple elements in the same area of living leaves. The utility of this approach was tested by examining changes over 48 h in unifoliate leaves of 7-d-old cowpea (Vigna unguiculata) plants simultaneously at 0.2 and 30 μM Mn in nutrient solution, with 30 μM Mn known to be toxic to cowpea and cause the formation of Mn-dense lesions. The fast X-ray fluorescence detector system reduced dwell on living leaf samples. This produced no evidence of tissue damage through repeated μ-XRF scanning, thereby overcoming previously noted experimental artifacts. This permitted, for the first time, visual and quantitative assessments of spatial and temporal changes in nutrient concentrations. By focusing on changes in Mn status, this study illustrated extension of two-dimensional μ-XRF scans to a three-dimensional geometry of Mn kinetics in the same area of leaves. The multi-element potential of this method was exemplified through the measurement of distributions and concentrations of K, Ca, Fe, Cu, and Zn within living plant leaves. This novel method and accompanying information on changes in Mn distribution showed the potential for microscopic, time-resolved, in vivo examination of changes in elemental distribution. We consider that this method will be of benefit for a wide range of studies, including functional characterization of molecular biology, examining changes in the distribution of nutrients, and understanding the movement and toxicity of contaminants
Acupuncture Modulates the Cerebello-Thalamo-Cortical Circuit and Cognitive Brain Regions in Patients of Parkinson's Disease With Tremor
Objective: To investigate the effect of acupuncture on Parkinson's disease (PD) patients with tremor and its potential neuromechanism by functional magnetic resonance imaging (fMRI).Methods: Forty-one PD patients with tremor were randomly assigned to true acupuncture group (TAG, n = 14), sham acupuncture group (SAG, n = 14) and waiting group (WG, n = 13). All patients received levodopa for 12 weeks. Patients in TAG were acupunctured on DU20, GB20, and the Chorea-Tremor Controlled Zone, and patients in SAG accepted sham acupuncture, while patients in WG received no acupuncture treatment until 12 weeks after the course was ended. The UPDRS II and III subscales, and fMRI scans of the patients' brains were obtained before and after the treatment course. UPDRS II and III scores were analyzed by SPSS, while the degree centrality (DC), regional homogeneity (ReHo) and amplitude low-frequency fluctuation (ALFF) were determined by REST.Results: Acupuncture improved the UPDRS II and III scores in PD patients with tremor without placebo effect, only in tremor score. Acupuncture had specific effects on the cerebrocerebellar pathways as shown by the decreased DC and ReHo and increased ALFF values, and nonspecific effects on the spinocerebellar pathways as shown by the increased ReHo and ALFF values (P < 0.05, AlphaSim corrected). Increased ReHo values were observed within the thalamus and motor cortex of the PD patients (P < 0.05, AlphaSim corrected). In addition, the default mode network (DMN), visual areas and insula were activated by the acupuncture with increased DC, ReHo and/or ALFF, while the prefrontal cortex (PFC) presented a significant decrease in ReHo and ALFF values after acupuncture (P < 0.05, AlphaSim corrected).Conclusions: The cerebellum, thalamus and motor cortex, which are connected to the cerebello-thalamo-cortical (CTC) circuit, were modulated by the acupuncture stimulation to alleviate the PD tremor. The regulation of neural activity within the cognitive brain regions (the DMN, visual areas, insula and PFC) together with CTC circuit may contributes to enhancing movement and improving patients' daily life activities
- …