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This paper deals with a discrete-time bulk-service 𝐺𝑒𝑜/𝐺𝑒𝑜/1 queueing system with infinite buffer space and multiple working
vacations. Considering an early arrival system, as soon as the server empties the system in a regular busy period, he leaves the
system and takes a working vacation for a random duration at time n. The service times both in a working vacation and in a
busy period and the vacation times are assumed to be geometrically distributed. By using embedded Markov chain approach and
difference operator method, queue length of the whole system at random slots and the waiting time for an arriving customer are
obtained. The queue length distributions of the outside observer’s observation epoch are investigated. Numerical experiment is
performed to validate the analytical results.

1. Introduction

Recently there has been a rapid increase in the literature
on discrete-time queueing system with working vacations.
These queueing models have been studied extensively and
applied to computer networks, communication systems, and
manufacturing systems. In the classical queueing systemwith
server vacations, the server stops working during vacation
periods. Suppose, however, that a system can be staffed with
a substitute server during the times the main server is taking
vacations. The service rate of the substitute server is different
from (andprobably lower than) that of themain server.This is
the notion of working vacations recently introduced by Servi
and Finn [1]. They studied an 𝑀/𝑀/1 queue with multiple
working vacations (𝑀/𝑀/1/𝑊𝑉). Their work is motivated
by the analysis of a reconfigurable wavelength-division mul-
tiplexing (WDM) optical access network. In 2006, Wu and
Takagi [2] generalized Servi and Finn’s 𝑀/𝑀/1/𝑊𝑉 queue
to an𝑀/𝐺/1/𝑊𝑉 queue. Baba [3] extendedWu and Takagi’s
work to a renewal input 𝐺𝐼/𝑀/1 queue with working vaca-
tions and derived the steady-state system length distributions
at an arrival and arbitrary epochs.The𝐺𝑒𝑜/𝐺𝑒𝑜/1 queue with

single andmultiple working vacations have been discussed in
Li and Tian [4] and Tian et al. [5], respectively. Chae et al.
[6] studied the 𝐺𝐼/𝑀/1 queue and 𝐺𝐼/𝐺𝑒𝑜/1 queue with
single working vacation (SWV). The discrete-time infinite
buffer 𝐺𝐼/𝐺𝑒𝑜/1 queue with multiple working vacations and
vacation interruption has been studied in Li et al. [7, 8].
The discrete-time finite buffer𝐺𝐼/𝐺𝑒𝑜/1 queue with multiple
working vacations has been discussed byGoswami andMund
[9]. All the above studies on discrete-time single server
queues have been carried out under the assumption that
a server serves singly at a time. However, there are many
instances where the servers are carried out in batches to
enhance the performance of the system. Over the last several
years the discrete-time single server queues in batch service
without vacations have been studied in Gupta and Goswami
[10], Chaudhry and Chang [11], Alfa and He [12], and Yi et al.
[13]. Lately, This type of queueing systems raise interest once
more by many scholars such as Banerjee et al. [14, 15], Claeys
et al. [16, 17].

The continuous-time infinite buffer single server batch
service queue with multiple vacations has been analyzed by
Choi andHan [18], Chang and Takine [19].The𝑀/𝐺/1 queue
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with bulk service and single vacation has been investigated by
Sikdar and Gupta [20].

As to the research to queueing systems with batch
service and working vacations (or vacation), Yu et al. [21]
considered a finite capacity and bulk-arrival and bulk-service
continuous-time queueing system with multiple working
vacations and partial batch rejection. Vijaya Laxmi and
Yesuf [22] studied a renewal input infinite buffer batch
service queue with single exponential working vacation and
accessibility to batches. Goswami and Mund [23] inves-
tigated a discrete-time batch service renewal input queue
with multiple working vacations. Note that although all the
above studies on discrete-time bulk-service queues have been
carried out, but, from their models, we can only obtain
the average length of the waiting for service; the average
length of the whole system cannot be obtained at prearrival,
arbitrary and outside observer’s observation epochs. In fact,
the number of customers being served in batches is a random
variable; it is difficult to compute the average length of the
whole system.

This paper focuses on a discrete-time batch-service
infinite buffer 𝐺𝑒𝑜/𝐺𝑒𝑜/1 queueing system with multiple
working vacations in which arrivals occur according to a geo-
metrical input. By using embedded Markov chain approach,
we obtained the operation rules of the one-step transition
probability matrix, the average length at random slots, and
the average waiting time for an arriving customer.Thismodel
has potential applications in computer networks where jobs
are processed in batches.

The rest of the paper is arranged as follows. In the next
section, the model of the considered queueing system is
described. In Section 3, the stationary distribution of queue
length at arbitrary slot epochs is discussed. In Section 4,
we study the waiting time distribution. In Section 5, we
discuss the outside observer’s observation epoch probabilities
distribution. In Section 6, some numerical results and the
sensitivity analysis of this system are given. Section 7 con-
cludes this paper.

2. System Description

We consider a discrete-time bulk-service infinite buffer space
queueing system with server multiple working vacations
according to the rule of an early arrival system. Assume
that the time axis is slotted into intervals of equal length
with the length of a slot being unity, and it is marked as
0, 1, 2, . . . , 𝑛, . . ., a potential arrival occurs in the interval
(𝑛, 𝑛
+
) and potential batch departures occur in (𝑛−, 𝑛). In

the meantime, the interarrival times 𝑇 of customers are
independent and geometrically distributed with probability
mass function (p.m.f.) 𝑃{𝑇 = 𝑘} = 𝑝𝑝𝑘−1, 𝑘 ≥ 1, 𝑝 = 1 − 𝑝.

The customers are served in batches of variable capacity,
the maximum service capacity for the server being 𝑎 (𝑎 ≥

1). Service times 𝑆
𝑏
during normal busy period and service

times 𝑆
𝑣
during a working vacation are assumed independent

and geometrically distributed with p.m.f. 𝑃{𝑆
𝑏
= 𝑘} =

𝜇
𝑏
𝜇
𝑘−1

𝑏
, 𝑘 ≥ 1, 𝜇

𝑏
= 1 − 𝜇

𝑏
and p.m.f. 𝑃{𝑆

𝑣
= 𝑘} =

𝜇
𝑣
𝜇
𝑘−1

𝑣
, 𝑘 ≥ 1, 𝜇

𝑣
= 1 − 𝜇

𝑣
, respectively. A new arriving

customer cannot go into the queue being served immediately
in spite of the working vacation period and the normal busy
period. The server leaves the system and takes a working
vacation at epoch 𝑛 as soon as system becomes empty
in regular period. The working vacation time follows a
geometric distribution with parameter 𝜃 (0 < 𝜃 < 1) and its
p.m.f. is𝑃{𝑉 = 𝑘} = 𝜃𝜃

𝑘−1

, 𝑘 ≥ 1, 𝜃 = 1−𝜃. If there are some
customers being served after the server finishes a working
vacation, the service interrupted at the end of a vacation is
lost and it is restarted with service rate 𝜇

𝑏
at the beginning

of the following service period, which means that the regular
busy period starts. The various time epochs at which events
occur are depicted in Figure 1.

We assume that interarrival times, service times, and
working vacation times are mutually independent.

In addition, the service discipline is first in first out
(FIFO). Let 𝑄

𝑛
be the number of customers in the system at

time 𝑛, and

𝐽
𝑛
=

{{{{

{{{{

{

0,
the system is in a working vacation

period at time 𝑛,

1,
the system is in a regular busy

period at time 𝑛.

(1)

Then {𝑄
𝑛
, 𝐽
𝑛
} is a Markov chain with the state space

Ω = {(0, 0)}⋃ {(𝑘, 𝑗) : 𝑘 ≥ 1, 𝑗 = 0, 1} , (2)

where state (𝑘, 1), 𝑘 ≥ 1 indicates that the system is in a
regular busy period; state (𝑘, 0), 𝑘 ≥ 0 indicates that the
system is in a working vacation period and there 𝑘 customers
in the system.

Using the lexicographical sequence for the states, the one-
step transition block matrix can be written as

P =

0

1

2

3

4

...
𝑎

𝑎 + 1

...

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

A00 B
C D E
C F G E
C F 0 G E
C F 0 0 G E
...

...
...

. . . . . . . . . . . .
C F 0 ⋅ ⋅ ⋅ 0 0 G E
0 H F 0 0 0 0 G E
...

. . . . . . . . . . . . . . . . . . . . . . . . . . .

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(3)

where the first column in front of the matrix denotes the
number of the customers for the first column block matrix in
matrixP, andA00 is transition probability from (0, 0) to (0, 0);
B is transition probability matrix from (0, 0) to {(1, 0), (1, 1)};
C is transition probability matrix from {(𝑖, 0), (𝑖, 1)} (1 ≤

𝑖 ≤ 𝑎) to (0, 0); D is transition probability matrix from
{(1, 0), (1, 1)} to {(1, 0), (1, 1)}; E is transition probability
matrix from {(𝑖, 0), (𝑖, 1)} (𝑖 ≥ 1) to {(𝑖+1, 0), (𝑖+1, 1)} (𝑖 ≥ 1);
F is transition probability matrix from {(𝑖, 0), (𝑖, 1)} (2 ≤ 𝑖 ≤

𝑎) to {(1, 0), (1, 1)} and from {(𝑖, 0), (𝑖, 1)} (𝑖 ≥ 𝑎 + 1) to
{(𝑖−𝑎+1, 0), (𝑖−𝑎+1, 1)} (𝑖 ≥ 𝑎+1);G is transition probability
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n− n n+ (n + 1)− n + 1 (n + 1)+

∗

∗

Potential batch-departure epoch
Potential arrival epoch
Outside observer’s epoch

(n+, (n + 1)−): Outside observer’s interval

n+: Epoch after a potential arrival
n−: Epoch prior to a potential batch departure

Figure 1: Various time epochs in EAS.

matrix from {(𝑖, 0), (𝑖, 1)} (𝑖 ≥ 2) to {(𝑖, 0), (𝑖, 1)} (𝑖 ≥ 2); H is
transition probability matrix from {(𝑖, 0), (𝑖, 1)} (𝑖 ≥ 𝑎 + 1) to
{(𝑖 − 𝑎, 0), (𝑖 − 𝑎, 1)} (𝑖 ≥ 𝑎 + 1).

We have

A00 = 𝑝 + 𝑝𝜃𝜇𝑣, B = [𝑝𝜃𝜇
𝑣
𝑝𝜃] ,

C = [𝑝𝜃𝜇𝑣
𝑝𝜇
𝑏

] , D = [
𝑝𝜃𝜇
𝑣
+ 𝑝𝜃𝜇

𝑣
𝑝𝜃

0 𝑝 𝜇
𝑏
+ 𝑝𝜇
𝑏

] ,

E = [𝑝𝜃𝜇𝑣 𝑝𝜃

0 𝑝𝜇
𝑏

] , F = [𝑝𝜃𝜇𝑣 0

0 𝑝𝜇
𝑏

] ,

G = [
𝑝𝜃𝜇
𝑣
𝑝𝜃

0 𝑝 𝜇
𝑏

] , H = [
𝑝𝜃𝜇
𝑣

0

0 𝑝𝜇
𝑏

] .

(4)

3. The Stationary Queue Size Distributions at
Random Slots

Assume that (𝑄, 𝐽) is the stationary limit of {𝑄
𝑛
, 𝐽
𝑛
}, and its

distribution is denoted as 𝜋
𝑘,𝑗
= lim
𝑛→∞

𝑃{𝑄
𝑛
= 𝑘, 𝐽
𝑛
= 𝑗} =

𝑃{𝑄 = 𝑘, 𝐽 = 𝑗}, (𝑘, 𝑗) ∈ Ω, we have the following theorem.

Theorem 1. If 𝜌 = 𝑝/𝑎𝜇
𝑏
< 1, 𝜌

0
= 𝑝/𝑎𝜇

𝑣
< 1, 𝜋

𝑘,𝑗
(𝑘 ≥

1, 𝑗 = 0, 1) are given by

𝜋
𝑘,0
=
𝑝𝜃𝜇
𝑣
(1 − 𝜉) 𝜉

𝑘−1

𝜔
𝜋
0,0
,

𝜋
𝑘,1
= 𝑐


0
𝑟
𝑘

+
𝑝𝜃𝜃𝜇
𝑣
(𝑝 + 𝑝𝜉) (1 − 𝜉) 𝜉

𝑘−1
𝜋
0,0

𝜔𝜛
, (𝑘 ≥ 1) ,

(5)

where

𝜔 = 1 − 𝜃 [1 − 𝑝𝜇
𝑣
] − 𝑝𝜃𝜇

𝑣
𝜉
𝑎

,

𝜛 = [(1 − 𝑝 𝜇
𝑏
) 𝜉 − (𝑝𝜇

𝑏
+ 𝑝𝜇
𝑏
𝜉
𝑎

+ 𝑝𝜇
𝑏
𝜉
𝑎+1

)] ,

𝑐


0
= (𝑝𝜃 {𝜔𝜛 + 𝜃𝜇

𝑣

×{𝑝𝜛 (1 − 𝜉) + (𝑝 + 𝑝𝜉) [𝜛 − 𝑝𝜇
𝑏
(1 − 𝜉

𝑎

)] }}

× (1 − 𝑟) )

× (𝑟𝜔𝜛𝑝𝜇
𝑏
(1 − 𝑟

𝑎

))
−1

𝜋
0,0
,

𝜋
0,0
= {1 + (𝑝𝜃𝜇

𝑣
𝜛 + 𝑝𝜃𝜃𝜇

𝑣
(𝑝 + 𝑝𝜉)) (𝜔𝜛)

−1

+ (𝑝𝜃 {𝜔𝜛 + 𝜃𝜇
𝑣

×{𝑝𝜛 (1 − 𝜉)+(𝑝+𝑝𝜉) [𝜛−𝑝𝜇
𝑏
(1−𝜉
𝑎

)]} })

×(𝜔𝜛𝑝𝜇
𝑏
(1 − 𝑟

𝑎

))
−1

}

−1

,

(6)

0 < 𝜉 < 1 and 𝜉 is the root of the equation 𝑝𝜇
𝑣
𝜃𝑧
𝑎+1
+𝑝𝜇
𝑣
𝜃𝑧
𝑎
−

(1 − 𝑝 𝜇
𝑣
𝜃)𝑧 + 𝑝𝜇

𝑣
𝜃 = 0, 0 < 𝑟 < 1 and 𝑟 is the root of the

equation 𝑝𝜇
𝑏
𝑧
𝑎+1

+ 𝑝𝜇
𝑏
𝑧
𝑎
+ 𝑝𝜇
𝑏
− (1 − 𝑝𝜇

𝑏
)𝑧 = 0.

Proof. According to the one-step transition probability
matrix, we can see which is not QBD process, the method of
matrix-geometric solution is invalid. Based on the stationary
equations obtained directly by stochastic balance, we have

𝜋
0,0
= 𝜋
0,0
A
00
+

𝑎

∑

𝑖=1

(𝜋
𝑖,0
, 𝜋
𝑖,1
)C,

(𝜋
1,0
, 𝜋
1,1
) =𝜋
0,0
B + (𝜋

1,0
, 𝜋
1,1
)D +

𝑎

∑

𝑖=2

(𝜋
𝑖,0
, 𝜋
𝑖,1
) F

+ (𝜋
𝑎+1,0

, 𝜋
𝑎+1,1

)H,

(𝜋
𝑘,0
, 𝜋
𝑘,1
) = (𝜋

𝑘−1,0
, 𝜋
𝑘−1,1

)E + (𝜋
𝑘,0
, 𝜋
𝑘,1
)G

+(𝜋
𝑎+𝑘−1,0

, 𝜋
𝑎+𝑘−1,1

) F+(𝜋
𝑎+𝑘,0

, 𝜋
𝑎+𝑘,1

)H, 𝑘≥2.

(7)

Then, we obtain the following equations:

𝜋
0,0
= 𝜋
0,0
(𝑝 + 𝑝𝜃𝜇

𝑣
) + 𝑝𝜃𝜇

𝑣

𝑎

∑

𝑖=1

𝜋
𝑖,0
+ 𝑝𝜇
𝑏

𝑎

∑

𝑖=1

𝜋
𝑖,1
, (8)

𝜋
1,0
= 𝑝𝜃𝜇

𝑣
𝜋
0,0
+ 𝑝𝜃𝜇

𝑣
𝜋
1,0
+ 𝑝𝜃𝜇

𝑣

𝑎

∑

𝑖=1

𝜋
𝑖,0
+ 𝑝𝜃𝜇

𝑣
𝜋
𝑎+1,0

,

(9)

𝜋
𝑘,0
=𝑝𝜃𝜇

𝑣
𝜋
𝑘−1,0

+ 𝑝𝜃𝜇
𝑣
𝜋
𝑘,0
+ 𝑝𝜃𝜇

𝑣
𝜋
𝑎+𝑘−1,0

+ 𝑝𝜃𝜇
𝑣
𝜋
𝑎+𝑘,0

, 𝑘 ≥ 2, (10)
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𝜋
1,1
= 𝑝𝜃𝜋

0,0
+ 𝑝𝜃𝜋

1,0
+ 𝑝𝜇
𝑏
𝜋
1,1
+ 𝑝𝜇
𝑏

𝑎

∑

𝑖=1

𝜋
𝑖,1
+ 𝑝𝜇
𝑏
𝜋
𝑎+1,1

,

(11)

𝜋
𝑘,1
=𝑝𝜃𝜋

𝑘−1,0
+ 𝑝𝜇
𝑏
𝜋
𝑘−1,1

+ 𝑝𝜃𝜋
𝑘,0
+ 𝑝𝜇
𝑏
𝜋
𝑘,1

+ 𝑝𝜇
𝑏
𝜋
𝑎+𝑘−1,1

+ 𝑝𝜇
𝑏
𝜋
𝑎+𝑘,1

, 𝑘 ≥ 2.

(12)

According to the characteristic of difference equations, let
𝜋
𝑘+𝑗,0

= 𝐸
𝑗
𝜋
𝑘,0

[24], 𝑗 ∈ 𝑍; 𝑘 = 0, 1, 2, . . ., where 𝐸
denotes the difference operator for the difference equation,
substituting it into (10), (10) can be written as

(𝑝𝜃𝜇
𝑣
𝐸
𝑎+1

+ 𝑝𝜃𝜇
𝑣
𝐸
𝑎

− (1 − 𝑝𝜃𝜇
𝑣
) 𝐸 + 𝑝𝜃𝜇

𝑣
) 𝜋
𝑘−1,0

= 0.

(13)

The auxiliary equation is given by

𝑝𝜃𝜇
𝑣
𝑧
𝑎+1

+ 𝑝𝜃𝜇
𝑣
𝑧
𝑎

− (1 − 𝑝𝜃𝜇
𝑣
) 𝑧 + 𝑝𝜃𝜇

𝑣
= 0. (14)

Let𝑓(𝑧) = 𝑝𝜃𝜇
𝑣
𝑧
𝑎+1
+𝑝𝜃𝜇

𝑣
𝑧
𝑎
+𝑝𝜃𝜇

𝑣
𝑧+𝑝𝜃𝜇

𝑣
and 𝑔(𝑧) = −𝑧.

Using Rouché’s theorem, it can be shown that there is only
one zero real root falls in the unit circle (Note: the root must
be real root; otherwise, there are two roots at least fall in the
unit circle, because the imaginary roots of an equation appear
in pairs.) We denote this root by 𝜉 (0 < 𝜉 < 1) and the other
𝑎 roots by 𝜉

𝑖
, |𝜉
𝑖
| ≥ 1 (𝑖 = 1, 2, 3, . . . , 𝑎). So 𝜉 satisfies 𝑓(𝜉) +

𝑔(𝜉) = 0. Therefore, the solution of (10) can be written as

𝜋
𝑘,0
= 𝑐
0
𝜉
𝑘

+

𝑎

∑

𝑖=1

𝑐
𝑖
𝜉
𝑘

𝑖
, 𝑘 ≥ 1. (15)

Since 𝑐
𝑖
(𝑖 = 1, 2, 3, . . . , 𝑎) = 0 (otherwise, the probability 𝜋

𝑘,0

tends to∞ when 𝑘 tends to∞), we get 𝜋
𝑘,0
= 𝑐
0
𝜉
𝑘
(𝑘 ≥ 1).

Let 𝑘 = 1, we get 𝑐
0
= 𝜉
−1
𝜋
1,0
, then

𝜋
𝑘,0
= 𝜋
1,0
𝜉
𝑘−1

, 𝑘 ≥ 1. (16)

Substituting (16) into (9), we obtain

𝜋
1,0
=
𝑝𝜃𝜇
𝑣
(1 − 𝜉)

𝜔
𝜋
0,0
, (17)

where 𝜔 = 1 − 𝜃[1 − 𝑝𝜇
𝑣
] − 𝑝𝜃𝜇

𝑣
𝜉
𝑎.

Hence,

𝜋
𝑘,0
=
𝑝𝜃𝜇
𝑣
(1 − 𝜉) 𝜉

𝑘−1

𝜔
𝜋
0,0
, 𝑘 ≥ 1. (18)

For 𝑘 ≥ 2, the difference equation (12) can be written as

𝑝𝜇
𝑏
𝜋
𝑘−1,1

+ (𝑝 𝜇
𝑏
− 1) 𝜋

𝑘,1
+ 𝑝𝜇
𝑏
𝜋
𝑎+𝑘−1,1

+ 𝑝𝜇
𝑏
𝜋
𝑎+𝑘,1

+
𝑝𝜃𝜃𝜇
𝑣
(𝑝 + 𝑝𝜉) (1 − 𝜉) 𝜉

𝑘−2

𝜔
𝜋
0,0
= 0.

(19)

Using 𝜋
𝑘+𝑗,1

= 𝐸
𝑗
𝜋
𝑘,1
, 𝑗 ∈ 𝑍; 𝑘 = 1, 2, . . ., the auxiliary

equation of (19) such that

𝑝𝜇
𝑏
𝑧
𝑎+1

+ 𝑝𝜇
𝑏
𝑧
𝑎

− (1 − 𝑝𝜇
𝑏
) 𝑧 + 𝑝𝜇

𝑏
= 0. (20)

Let 𝐺(𝑧) = 𝑝𝜇
𝑏
𝑧
𝑎+1

+ 𝑝𝜇
𝑏
𝑧
𝑎
+ 𝑝𝜇
𝑏
𝑧 + 𝑝𝜇

𝑏
, obviously 𝐺(1) =

1, 𝐺(1) = (𝑎 + 1)𝑝𝜇
𝑏
+ 𝑎𝑝𝜇

𝑏
+ 𝑝𝜇
𝑏
= 𝑎𝜇
𝑏
+ 1 − 𝑝. Since

𝜌 = 𝑝/(𝑎𝜇
𝑏
) < 1, that is, 𝑝 < 𝑎𝜇

𝑏
, we can see that 𝐺(1) > 1.

According toHunter [25], the equation 𝑧 = 𝐺(𝑧) has a unique
real root in unit circle, which can be denoted by 𝑟; the other
𝑎 roots can be denoted by 𝑟

𝑖
, |𝑟
𝑖
| ≥ 1 (𝑖 = 1, 2, . . . , 𝑎). As

mentioned above, the general solution of (20) can be written
as

𝑧
∗

= 𝑐


0
𝑟
𝑘

, 𝑘 ≥ 1. (21)

Using the method of nonhomogeneous difference operator,
the special solution of (19) can be written as

𝜋
∗

𝑘,1
=
𝑝𝜃𝜃𝜇
𝑣
(𝑝 + 𝑝𝜉) (1 − 𝜉) 𝜉

𝑘−1
𝜋
0,0

𝜔𝜛
, 𝑘 ≥ 1, (22)

where 𝜛 = [(1 − 𝑝 𝜇
𝑏
)𝜉 − (𝑝𝜇

𝑏
+ 𝑝𝜇
𝑏
𝜉
𝑎
+ 𝑝𝜇
𝑏
𝜉
𝑎+1
)].

From (21) and (22), we have

𝜋
𝑘,1
= 𝑐


0
𝑟
𝑘

+
𝑝𝜃𝜃𝜇
𝑣
(𝑝 + 𝑝𝜉) (1 − 𝜉) 𝜉

𝑘−1
𝜋
0,0

𝜔𝜛
, 𝑘 ≥ 1.

(23)

Substituting (17), (18), and (23) into (11), we obtain

𝑐


0
= (𝑝𝜃 {𝜔𝜛+𝜃𝜇

𝑣
{𝑝𝜛 (1−𝜉)+(𝑝+𝑝𝜉) [𝜛−𝑝𝜇

𝑏
(1−𝜉
𝑎

)]}}

× (1 − 𝑟) ) (𝑟𝜔𝜛𝑝𝜇
𝑏
(1 − 𝑟

𝑎

))
−1

𝜋
0,0
.

(24)

Substituting (24) into (23), we can obtain 𝜋
𝑘,1
(𝑘 ≥ 1).

Using ∑∞
𝑖=0
𝜋
𝑖,0
+ ∑
∞

𝑖=1
𝜋
𝑖,1
= 1, we can get

𝜋
0,0
= {1 + (𝑝𝜃𝜇

𝑣
𝜛 + 𝑝𝜃𝜃𝜇

𝑣
(𝑝 + 𝑝𝜉)) (𝜔𝜛)

−1

+ (𝑝𝜃 {𝜔𝜛 + 𝜃𝜇
𝑣

×{𝑝𝜛 (1−𝜉)+(𝑝+𝑝𝜉) [𝜛−𝑝𝜇
𝑏
(1−𝜉
𝑎

)]} })

×(𝜔𝜛𝑝𝜇
𝑏
(1 − 𝑟

𝑎

))
−1

}

−1

.

(25)

Remark 2. If 𝜃 → 0 and 𝑎 = 1, this queueing system is
equivalent to 𝐺𝑒𝑜𝑚/𝐺𝑒𝑜𝑚/1 queueing system with a server
serves customers singly. Because of𝜌

0
= 𝑝/𝑎𝜇

𝑣
< 1 and 1 ≤ 𝑎,

then 𝑝/𝜇
𝑣
< 1. Hence, 0 < 𝜉 = (𝑝𝜇

𝑣
/𝑝𝜇
𝑣
) < 1. We have

𝜋
0,0
= 1 − 𝜉, 𝜋

𝑘,0
= (1 − 𝜉) 𝜉

𝑘

, 𝑘 ≥ 1, (26)

which arematchedwith the results given byTian andMa [26].
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Corollary 3. Define 𝐽 as the state of system at random slots,
the steady-state probability of this system at random slots can
be written as

𝑃 {𝐽 = 0} = (1 +
𝑝𝜃𝜇
𝑣

𝜔
)𝜋
0,0
,

𝑃 {𝐽 = 1} = {(𝑝𝜃 {𝜔𝜛 + 𝜃𝜇
𝑣

×{𝑝𝜛 (1−𝜉)+(𝑝+𝑝𝜉) [𝜛−𝑝𝜇
𝑏
(1−𝜉
𝑎

)]} })

× (𝜔𝜛𝑝𝜇
𝑏
(1 − 𝑟

𝑎

))
−1

+ (𝑝𝜃𝜃𝜇
𝑣
(𝑝 + 𝑝𝜉)) (𝜔𝜛)

−1

}𝜋
0,0
.

(27)

Theorem 4. If |𝑧| ≤ 1, the probability generating function
(PGF) of steady-state queue length at random slots is given by

𝐿 (𝑧) = {1 + {𝑐


0

𝑟𝑧

1 − 𝑟𝑧
+
𝑝𝜃𝜇
𝑣
(1 − 𝜉) 𝑧

𝜔 (1 − 𝜉𝑧)

+
𝑝𝜃𝜃𝜇
𝑣
(𝑝 + 𝑝𝜉) (1 − 𝜉) 𝑧

𝜔𝜛 (1 − 𝜉𝑧)
}}𝜋
0,0
,

(28)

and the average queue length is

𝐸 (𝐿) = {
𝑟𝑐


0

(1 − 𝑟)
2
+
[𝜛 + 𝜃 (𝑝 + 𝑝𝜉)] 𝑝𝜃𝜇

𝑣

𝜔𝜛 (1 − 𝜉)
}𝜋
0,0
. (29)

Proof. In the steady state, the queue length 𝐿 at random slots
has marginal distribution as

𝑃 {𝐿 = 0} = 𝜋
0,0
,

𝑃 {𝐿 = 𝑘} = 𝜋
𝑘,0
+ 𝜋
𝑘,1

= 𝑐


0
𝑟
𝑘

+
𝑝𝜃𝜇
𝑣
(1 − 𝜉) 𝜉

𝑘−1

𝜔
𝜋
0,0

+
𝑝𝜃𝜃𝜇
𝑣
(𝑝 + 𝑝𝜉) (1 − 𝜉) 𝜉

𝑘−1
𝜋
0,0

𝜔𝜛
, (𝑘 ≥ 1) .

(30)

Using 𝐿(𝑧) = 𝑃{𝐿 = 0} +∑∞
𝑘=1
𝑃{𝐿 = 𝑘}𝑧

𝑘, we can obtain (28)
easily; furthermore, taking derivation to 𝐿(𝑧) and let 𝑧 = 1,
we can get (29).

4. The Waiting Time Distribution

Let the random variable 𝑇
𝑞
be the total waiting time of an

arriving customer in the queue, 𝑁
𝑤
represents the number

of the customers in the system. Assume that an arriving
customer finds 𝑖 customers in the system, the conditional
distribution law that he waits for 𝑘 slots is subject to 𝑤

𝑖
(𝑘) =

𝑃{𝑇
𝑞
= 𝑘/𝑁

𝑤
= 𝑖}, 𝑖 = 0, 1, 2, . . . , 𝑘 = 0, 1, 2, . . ., and PGF

is𝑊
𝑖
(𝑧) = ∑

∞

𝑘=0
𝑤
𝑖
(𝑘)𝑧
𝑘. In the steady state, the waiting time

with finite mean 𝑤
𝑞
has PGF 𝑤

𝑞
(𝑧) = ∑

∞

𝑖=0
𝜋
𝑖𝑙
𝑊
𝑖
(𝑧), 𝑙 = 0, 1.

Theorem 5. In the steady state, the PGF of waiting time for an
arriving customer is given by

𝑤
𝑞
(𝑧) = 𝜋

0,0
+
𝑝𝜃𝜃𝜇
𝑣
(𝑝 + 𝑝𝜉) (1 − 𝜉

𝑎
) 𝑞 (𝑧)

𝜔𝜛
𝜋
0,0

+

𝑝𝜇
𝑣
(1 − 𝜉

𝑎
) 𝑞 (𝜃𝑧)

𝜔
𝜋
0,0

+

𝑝𝜃𝜃𝜇
𝑣
(𝑝+𝑝𝜉) {1−𝑞 (𝑧) 𝜉

𝑎
−[1−𝑞 (𝑧)] 𝜉

𝑎−1
} 𝜉
𝑎
𝑞 (𝑧)

𝜔𝜛 [1−𝑞 (𝑧) 𝜉𝑎]
𝜋
0,0

+

{1−𝑞 (𝜃𝑧) 𝜉
𝑎
−[1−𝑞 (𝜃𝑧)] 𝜉

𝑎−1
} 𝑝𝜇
𝑣
𝑞 (𝜃𝑧) 𝜉

𝑎

𝜔 [1 − 𝑞 (𝜃𝑧) 𝜉𝑎]

𝜋
0,0

+ 𝑐


0
{
𝑟 − 𝑟
2𝑎

1 − 𝑟
+

𝑞 (𝑧) 𝑟
2𝑎
(1 − 𝑟

𝑎
)

(1 − 𝑟) [1 − 𝑞 (𝑧) 𝑟𝑎]
} 𝑞 (𝑧)

+
𝑝𝜃𝜇
𝑣
𝑞 (𝑧) (1 − 𝜉

𝑎
) 𝜉
𝑎−1

𝜔 (1 − 𝜇
𝑣
𝑧𝜃) [1 − 𝜉𝑎𝑞 (𝑧)] [1 − 𝜉𝑎𝑞 (𝑧𝜃)]

𝜋
0,0
,

(31)

and the average waiting time as

𝑤
𝑞
=
1

𝜇
𝑏

{

(1 − 𝑟
𝑎
+ 𝑟
2𝑎−1

) 𝑟

(1 − 𝑟𝑎) (1 − 𝑟)
𝑐


0

+

𝑝𝜃𝜃𝜇
𝑣
(𝑝 + 𝑝𝜉) (1 − 𝜉

𝑎
+ 𝜉
2𝑎−1

)

𝜔𝜛 (1 − 𝜉𝑎)
𝜋
0,0

+
𝑝𝜃𝜇
𝑣
𝜉
𝑎−1

𝜔 (1 − 𝜇
𝑣
𝜃 − 𝜇
𝑣
𝜃𝜉𝑎) (1 − 𝜉𝑎)

𝜋
0,0
}

+
𝑝𝜇
𝑣
𝜇
𝑣
𝜃

𝜔

× {({ [1 + 𝜉
𝑎−1

+ 𝜃 (𝜉
𝑎−1

− 𝜉
2𝑎−1

) − 2𝜉
𝑎

]

× (1 − 𝜇
𝑣
𝜃) − 𝜇

𝑣
𝜃 (𝜉
𝑎−1

− 𝜉
𝑎

) 𝜉
𝑎

} 𝜉
𝑎

)

× ((1 − 𝜇
𝑣
𝜃) (1 − 𝜇

𝑣
𝜃 − 𝜇
𝑣
𝜃𝜉
𝑎

)
2

)

−1

+ (1 − 𝜉
𝑎

) ((1 − 𝜇
𝑣
𝜃)
2

)

−1

}𝜋
0,0

+
𝑝𝜃𝜃𝜇
2

𝑣
𝜉
𝑎−1

𝜔 (1 − 𝜇
𝑣
𝜃) (1 − 𝜇

𝑣
𝜃 − 𝜇
𝑣
𝜃𝜉𝑎)

𝜋
0,0
.

(32)

Proof. Firstly, we define ⌊𝑥⌋ as a greatest integer function
(floor), which returns the greatest integer less than or equal
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to a real number 𝑥. An arriving customer may observe the
system in any one of the following two cases.

Case 1.When𝑇
𝑞
= 0, this case has no customers in the system

and the server is on vacation, that is,

𝑤
0
(0) = 𝑃{

𝑇
𝑞
= 0

𝑁
𝑤
= 0

} = 𝜋
0,0
. (33)

Case 2. When 𝑇
𝑞
= 𝑚, (𝑚 ≥ 1), there are two cases as follows.

(1)The server is on a normal busy period and 𝑖 customers
in the system, meantime an arriving customer cannot go into
the queue being served immediately.

Under this condition, an arriving customer has to wait
for one period of service for 1 ≤ 𝑖 ≤ 𝑎 and ⌊𝑖/𝑎⌋ periods
of service for 𝑖 > 𝑎. Each period of service 𝑆

𝑏𝑖
(𝑖 = 1, 2, . . .)

is independent and geometrically distributed with p.m.f.
𝑃{𝑆
𝑏𝑖
= 𝑘} = 𝜇

𝑏
𝜇
𝑘−1

𝑏
, 𝑘 ≥ 1, 𝜇

𝑏
= 1 − 𝜇

𝑏
, which has PGF

as 𝜇
𝑏
𝑧/(1 − 𝜇

𝑏
𝑧).

We have

𝑤
𝑖
(𝑚) =

{{{{

{{{{

{

𝑃{
𝑠
𝑏1
= 𝑚

𝑁
𝑤
= 𝑖
} , 𝑖 ≤ 𝑎,

𝑃 {𝑠
𝑏1
+ 𝑠
𝑏2
+ ⋅ ⋅ ⋅ + 𝑠

𝑏⌊𝑖/𝑎⌋
=

𝑚

𝑁
𝑤
= 𝑖
} , 𝑖 > 𝑎.

(34)

Hence,

𝑊
𝑖
(𝑧) =

∞

∑

𝑚=1

𝑤
𝑖
(𝑚) 𝑧
𝑚

=
𝜇
𝑏
𝑧

1 − 𝜇
𝑏
𝑧
, 1 ≤ 𝑖 ≤ 𝑎,

𝑊
𝑖
(𝑧) =

∞

∑

𝑚=1

𝑤
𝑖
(𝑚) 𝑧
𝑚

= (
𝜇
𝑏
𝑧

1 − 𝜇
𝑏
𝑧
)

⌊𝑖/𝑎⌋

, 𝑖 > 𝑎.

(35)

Let 𝑞(𝑧) = 𝑢
𝑏
𝑧/(1−𝜇

𝑏
𝑧), the PGF of the waiting time is given

by

𝑝𝜃𝜃𝜇
𝑣
(𝑝 + 𝑝𝜉) (1 − 𝜉

𝑎
) 𝑞 (𝑧)

𝜔𝜛
𝜋
0,0

+ 𝑐


0
{
𝑟 − 𝑟
2𝑎

1 − 𝑟
+

𝑞 (𝑧) 𝑟
2𝑎
(1 − 𝑟

𝑎
)

(1 − 𝑟) [1 − 𝑞 (𝑧) 𝑟𝑎]
} 𝑞 (𝑧)

+

𝑝𝜃𝜃𝜇
𝑣
(𝑝+𝑝𝜉) {1−𝑞 (𝑧) 𝜉

𝑎
−[1−𝑞 (𝑧)] 𝜉

𝑎−1
} 𝜉
𝑎
𝑞 (𝑧)

𝜔𝜛 [1 − 𝑞 (𝑧) 𝜉𝑎]
𝜋
0,0
.

(36)

(2) An arriving customer finds the server is on vacation.
Let 𝑠
𝑣𝑗

be the 𝑗th length of the period of service with
service rate 𝜇

𝑣
and let 𝑠(𝑗)

𝑣
be the sum of the length of

𝑗 periods of service with service rate 𝜇
𝑣
, 𝑗 = 1, 2, 3, . . .,

where 𝑠(0)
𝑣

= 0. Each period of service 𝑆
𝑣𝑖
(𝑖 = 1, 2, . . .)

is mutually independent and geometrically distributed with
p.m.f. 𝑃{𝑆

𝑣𝑖
= 𝑘} = 𝜇

𝑣
𝜇
𝑘−1

𝑣
, 𝑘 ≥ 1, 𝜇

𝑣
= 1 − 𝜇

𝑣
. There are two

cases in this condition.

(A) A vacation is going on whereas all of the arrived
customers have been served. Then, an arriving customer has
to wait for one period of service for 𝑖 ≤ 𝑎 and ⌊𝑖/𝑎⌋ periods of
service for 𝑖 > 𝑎. We have

𝑤
𝑖
(𝑚) = 𝑃{

𝑠
𝑣1
= 𝑚

𝑁
𝑤
= 𝑖
; 𝑉 ≥ 𝑚} , 1 ≤ 𝑖 ≤ 𝑎,

𝑊
𝑖
(𝑧) =

∞

∑

𝑚=1

𝑤
𝑖
(𝑚) 𝑧
𝑚

=
𝜇
𝑣
𝑧

1 − 𝜃𝜇
𝑣
𝑧

, 1 ≤ 𝑖 ≤ 𝑎,

𝑤
𝑖
(𝑚) =𝑃{𝑠

𝑣1
+𝑠
𝑣2
+ ⋅ ⋅ ⋅ +𝑠

𝑣⌊𝑖/𝑎⌋
=

𝑚

𝑁
𝑤
= 𝑖
; 𝑉≥𝑚} , 𝑖>𝑎,

𝑊
𝑖
(𝑧) =

∞

∑

𝑚=1

𝑤
𝑖
(𝑚) 𝑧
𝑚

=
1

𝜃

(
𝜇
𝑣
𝜃𝑧

1 − 𝜇
𝑣
𝜃𝑧

)

⌊𝑖/𝑎⌋

, 𝑖 > 𝑎.

(37)

Let 𝑞(𝑧) = 𝜇
𝑣
𝑧/(1 − 𝜇

𝑣
𝑧). The PGF of the waiting time is

given by

𝑝𝜇
𝑣
(1 − 𝜉

𝑎
)

𝜔
𝑞 (𝜃𝑧) 𝜋

0,0

+

{1 − 𝑞 (𝜃𝑧) 𝜉
𝑎
− [1 − 𝑞 (𝜃𝑧)] 𝜉

𝑎−1
} 𝑝𝜇
𝑣
𝑞 (𝜃𝑧) 𝜉

𝑎

𝜔 [1 − 𝑞 (𝜃𝑧) 𝜉𝑎]

𝜋
0,0
.

(38)

(B) If a vacation is over and 𝑗 (𝑗 = 0, 1 ≤ 𝑖 ≤ 𝑎; 1 ≤

𝑗 < ⌊𝑖/𝑎⌋, 𝑖 > 𝑎) periods of service ended, the service rate is
converted to 𝜇

𝑏
from 𝜇

𝑣
and the normal busy period begins.

The waiting time of an arriving customer should be equal
to the sum of the server’s vacation times and one period of
service for 1 ≤ 𝑖 ≤ 𝑎 and ⌊𝑖/𝑎⌋ − 𝑗 periods of service for 𝑖 > 𝑎.
The service rate of ⌊𝑖/𝑎⌋ − 𝑗 periods of service is 𝜇

𝑏
. We have

𝑤
𝑖
(𝑚) = 𝑃{

𝑇
𝑞
= 𝑚

𝑁 = 𝑖
; 𝑉 < 𝑠

𝑣1
} , 1 ≤ 𝑖 ≤ 𝑎,

𝑤
𝑖
(𝑚) =

⌊𝑖/𝑎⌋−1

∑

𝑗=0

𝑃{
𝑇
𝑞
= 𝑚

𝑁 = 𝑖
; 𝑠
(𝑗)

𝑣
≤ 𝑉 < 𝑠

(𝑗+1)

𝑣
} , 𝑖 > 𝑎.

(39)

Hence,

𝑤
𝑖
(𝑚)

=

⌊𝑖/𝑎⌋−1

∑

𝑗=0

𝑃{
𝑇
𝑞
= 𝑚

𝑁 = 𝑖
; 𝑠
(𝑗)

𝑣
≤ 𝑉 < 𝑠

(𝑗+1)

𝑣
}

=

⌊𝑖/𝑎⌋−1

∑

𝑗=0

𝑃 {𝑉 + 𝑠
𝑏1
+ 𝑠
𝑏2
+ ⋅ ⋅ ⋅ + 𝑠

𝑏⌊𝑖/𝑎⌋−𝑗
=𝑚; 𝑠

(𝑗)

𝑣
≤𝑉<𝑠

(𝑗+1)

𝑣
}
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Table 1: Queue length distributions at random slots for 𝑎 = 1, 𝑝 = 0.3, 𝜇
𝑣
= 0.4, 𝜇

𝑏
= 0.6, and 𝜃 = 0.7.

𝑛 𝜋
𝑛,0

𝜋
𝑛,1

𝑛 �̃�
𝑛,0

�̃�
𝑛,1

0 0.5580 0 0 0.3906 0
1 0.0363 0.3128 1 0.0603 0.3539
2 0.0022 0.0679 2 0.0037 0.1501
3 1.39𝐸 − 04 0.0128 3 2.32𝐸 − 04 0.0299
4 8.64𝐸 − 06 0.0023 4 1.44𝐸 − 05 0.0055
5 5.35𝐸 − 07 4.17𝐸 − 04 5 8.90𝐸 − 07 9.92𝐸 − 04

6 3.32𝐸 − 08 7.43𝐸 − 05 6 5.51𝐸 − 08 1.77𝐸 − 04

7 2.05𝐸 − 09 1.32𝐸 − 05 7 3.42𝐸 − 09 3.16𝐸 − 05

8 1.27𝐸 − 10 2.35𝐸 − 06 8 2.12𝐸 − 10 5.62𝐸 − 06

9 7.89𝐸 − 12 4.19𝐸 − 07 9 1.31𝐸 − 11 1.00𝐸 − 06

10 4.89𝐸 − 13 7.45𝐸 − 08 10 8.13𝐸 − 13 1.78𝐸 − 07

11 3.03𝐸 − 14 1.32𝐸 − 08 11 5.04𝐸 − 14 3.16𝐸 − 08

12 1.88𝐸 − 15 2.36𝐸 − 09 12 3.12𝐸 − 15 5.62𝐸 − 09

13 1.16𝐸 − 16 4.19𝐸 − 10 13 1.93𝐸 − 16 1.00𝐸 − 09

14 7.21𝐸 − 18 7.45𝐸 − 11 14 1.20𝐸 − 17 1.78𝐸 − 10

15 4.47𝐸 − 19 1.33𝐸 − 11 15 7.43𝐸 − 19 3.16𝐸 − 11

Sum 1 Sum 1
𝐸(𝐿) = 0.2741, 𝐸(𝑤

𝑞
) = 1.2783.

Table 2: Queue length distributions at random slots for 𝑎 = 4, 𝑝 = 0.3, 𝜇
𝑣
= 0.4, 𝜇

𝑏
= 0.6, and 𝜃 = 0.7.

𝑛 𝜋
𝑛,0

𝜋
𝑛,1

𝑛 �̃�
𝑛,0

�̃�
𝑛,1

0 0.6092 0 0 0.4265 0
1 0.0394 0.263 1 0.0654 0.3313
2 0.0024 0.0623 2 0.0041 0.1319
3 1.51𝐸 − 04 0.012 3 2.51𝐸 − 04 0.0277
4 9.37𝐸 − 06 0.0022 4 1.56𝐸 − 05 0.0052
5 5.80𝐸 − 07 3.95𝐸 − 04 5 9.65𝐸 − 07 9.39𝐸 − 04

6 3.60𝐸 − 08 7.05𝐸 − 05 6 5.98𝐸 − 08 1.68𝐸 − 04

7 2.23𝐸 − 09 1.26𝐸 − 05 7 3.70𝐸 − 09 2.99𝐸 − 05

8 1.38𝐸 − 10 2.23𝐸 − 06 8 2.30𝐸 − 10 5.33𝐸 − 06

9 8.56𝐸 − 12 3.97𝐸 − 07 9 1.42𝐸 − 11 9.48𝐸 − 07

10 5.30𝐸 − 13 7.07𝐸 − 08 10 8.81𝐸 − 13 1.69𝐸 − 07

11 3.29𝐸 − 14 1.26𝐸 − 08 11 5.46𝐸 − 14 3.00𝐸 − 08

12 2.04𝐸 − 15 2.24𝐸 − 09 12 3.38𝐸 − 15 5.33𝐸 − 09

13 1.26𝐸 − 16 3.98𝐸 − 10 13 2.10𝐸 − 16 9.49𝐸 − 10

14 7.82𝐸 − 18 7.07𝐸 − 11 14 1.30𝐸 − 17 1.69𝐸 − 10

15 4.84𝐸 − 19 1.26𝐸 − 11 15 8.05𝐸 − 19 3.00𝐸 − 11

Sum 1 Sum 1
𝐸(𝐿) = 0.2597, 𝐸(𝑤

𝑞
) = 0.8425.

=

⌊𝑖/𝑎⌋−1

∑

𝑗=0

𝑚−⌊𝑖/𝑎⌋+𝑗

∑

𝑢=1

𝑃 {𝑉 = 𝑢}

× 𝑃 {𝑠
𝑏1
+ 𝑠
𝑏2
+ ⋅ ⋅ ⋅ + 𝑠

𝑏⌊𝑖/𝑎⌋−𝑗
= 𝑚 − 𝑢}

× 𝑃 {𝑠
(𝑗)

𝑣
≤ 𝑢 < 𝑠

(𝑗+1)

𝑣
} , 𝑖 > 𝑎.

(40)

The PGF of the waiting time can be given by

𝑝𝜃𝜇
𝑣
𝑞 (𝑧) (1 − 𝜉

𝑎
) 𝜉
𝑎−1

𝜔 (1 − 𝜇
𝑣
𝑧𝜃) [1 − 𝜉𝑎𝑞 (𝑧)] [1 − 𝜉𝑎𝑞 (𝑧𝜃)]

𝜋
0,0
. (41)

Adding (33)–(41), we can get (31), using (𝑑𝑤
𝑞
(𝑧)/𝑑𝑧) | 𝑧=1 , we

can obtain (32).
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Table 3: Queue length distributions at random slots for 𝑎 = 5, 𝑝 = 0.3, 𝜇
𝑣
= 0.4, 𝜇

𝑏
= 0.6, and 𝜃 = 0.7.

𝑛 𝜋
𝑛,0

𝜋
𝑛,1

𝑛 �̃�
𝑛,0

�̃�
𝑛,1

0 0.6095 0 0 0.4266 0
1 0.0394 0.2627 1 0.0655 0.3312
2 0.0024 0.0622 2 0.0041 0.1319
3 1.51𝐸 − 04 0.012 3 2.51𝐸 − 04 0.0277
4 9.37𝐸 − 06 0.0022 4 1.56𝐸 − 05 0.0052
5 5.81𝐸 − 07 3.95𝐸 − 04 5 9.65𝐸 − 07 9.39𝐸 − 04

6 3.60𝐸 − 08 7.05𝐸 − 05 6 5.98𝐸 − 08 1.68𝐸 − 04

7 2.23𝐸 − 09 1.25𝐸 − 05 7 3.71𝐸 − 09 2.99𝐸 − 05

8 1.38𝐸 − 10 2.23𝐸 − 06 8 2.30𝐸 − 10 5.33𝐸 − 06

9 8.56𝐸 − 12 3.97𝐸 − 07 9 1.42𝐸 − 11 9.48𝐸 − 07

10 5.30𝐸 − 13 7.06𝐸 − 08 10 8.82𝐸 − 13 1.69𝐸 − 07

11 3.29𝐸 − 14 1.26𝐸 − 08 11 5.46𝐸 − 14 3.00𝐸 − 08

12 2.04𝐸 − 15 2.23𝐸 − 09 12 3.39𝐸 − 15 5.33𝐸 − 09

13 1.26𝐸 − 16 3.97𝐸 − 10 13 2.10𝐸 − 16 9.48𝐸 − 10

14 7.82𝐸 − 18 7.07𝐸 − 11 14 1.30𝐸 − 17 1.69𝐸 − 10

15 4.85𝐸 − 19 1.26𝐸 − 11 15 8.06𝐸 − 19 3.00𝐸 − 11

Sum 1 Sum 1
𝐸(𝐿) = 0.2597, 𝐸(𝑤

𝑞
) = 0.8421.

Table 4: Queue length distributions at random slots for 𝑎 = 10, 𝑝 = 0.3, 𝜇
𝑣
= 0.4, 𝜇

𝑏
= 0.6, and 𝜃 = 0.7.

𝑛 𝜋
𝑛,0

𝜋
𝑛,1

𝑛 �̃�
𝑛,0

�̃�
𝑛,1

0 0.6095 0 0 0.4267 0
1 0.0394 0.2627 1 0.0655 0.3312
2 0.0024 0.0622 2 0.0041 0.1318
3 1.51𝐸 − 04 0.012 3 2.51𝐸 − 04 0.0277
4 9.37𝐸 − 06 0.0022 4 1.56𝐸 − 05 0.0052
5 5.81𝐸 − 07 3.95𝐸 − 04 5 9.65𝐸 − 07 9.38𝐸 − 04

6 3.60𝐸 − 08 7.05𝐸 − 05 6 5.98𝐸 − 08 1.68𝐸 − 04

7 2.23𝐸 − 09 1.25𝐸 − 05 7 3.71𝐸 − 09 2.99𝐸 − 05

8 1.38𝐸 − 10 2.23𝐸 − 06 8 2.30𝐸 − 10 5.33𝐸 − 06

9 8.56𝐸 − 12 3.97𝐸 − 07 9 1.42𝐸 − 11 9.48𝐸 − 07

10 5.30𝐸 − 13 7.06𝐸 − 08 10 8.82𝐸 − 13 1.69𝐸 − 07

11 3.29𝐸 − 14 1.26𝐸 − 08 11 5.46𝐸 − 14 3.00𝐸 − 08

12 2.04𝐸 − 15 2.23𝐸 − 09 12 3.39𝐸 − 15 5.33𝐸 − 09

13 1.26𝐸 − 16 3.97𝐸 − 10 13 2.10𝐸 − 16 9.48𝐸 − 10

14 7.82𝐸 − 18 7.07𝐸 − 11 14 1.30𝐸 − 17 1.69𝐸 − 10

15 4.85𝐸 − 19 1.26𝐸 − 11 15 8.06𝐸 − 19 3.00𝐸 − 11

Sum 1 Sum 1
𝐸(𝐿) = 0.2597, 𝐸(𝑤

𝑞
) = 0.8421.

5. Outside Observer’s Observation
Epoch Distributions

For an early arrive system, since an outside observer’s
observation epoch falls in the time interval after a potential
arrival and before a potential batch departure, let, �̃�

𝑛,0
, �̃�
𝑛,1

be 𝑛 (𝑛 ≥ 0) customers in the system and the server is on
vacation (including the servicing customers), 𝑛 customers in
the system and the server is in regular busy period (including
the servicing customers).Through observing the relationship

between random slot 𝑡 and the outside observer’s observation
epoch (∗), we have

�̃�
0,0
= 𝑝𝜋
0,0
,

�̃�
𝑛,0
= 𝑝𝜃𝜋

𝑛,0
+ 𝑝𝜃𝜋

𝑛−1,0
, (𝑛 ≥ 1) ,

�̃�
1,1
= 𝑝𝜋
1,1
+ 𝑝𝜃𝜋

0,0
+ 𝑝𝜃𝜋

1,0
,

�̃�
𝑛,1
= 𝑝𝜋
𝑛,1
+ 𝑝𝜋
𝑛−1,1

+ 𝑝𝜃𝜋
𝑛,0
+ 𝑝𝜃𝜋

𝑛−1,0
, (𝑛 ≥ 2) .

(42)
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Figure 4: Effect of 𝑎 on the average queue length and the average
waiting time.

6. Numerical Results and the Sensitivity
Analysis of this System

In this section, we present some numerical results in self-
explanatory tables and graphs for queue length distributions
at random slots and all the numerical results have been
obtained using the results derived in this paper.

We observe that 𝜋
𝑛,0

and �̃�
𝑛,0

monotonically increase
whereas 𝜋

𝑛,1
and �̃�

𝑛,1
monotonically decrease as 𝑎 increases

in Tables 1–4. This situation continues until 𝑎 is equal to
some constant; all data will tend to be a steady state. The
above description is consistent with actual situation. In
the meantime, 𝐸(𝐿) and 𝐸(𝑤

𝑞
) monotonically decease as 𝑎

increases. In Figures 2 and 3, fixing 𝑎 = 10, 𝑝 = 0.3,
𝜇
𝑏
= 0.5, and 𝜃 = 0.3, 0.5, 0.7, we have plotted the effect of

various vacation service rates on the average queue length and
the average waiting time, respectively. We observe that the
average queue length and the average waiting time decrease
as the vacation service rate increases. In Figure 4, fixing 𝑝 =
0.3, 𝜇

𝑣
= 0.4, 𝜇

𝑏
= 0.6, and 𝜃 = 0.7, the steady-state average

queue length equals 0.2597 from 𝑎 = 4 on and the steady-
state average waiting time equals 0.8421 from 𝑎 = 5 on. They
do not change as the batch size increases.

7. Conclusions

A 𝐺𝑒𝑜𝑚/𝐺𝑒𝑜𝑚[𝑎]/1/𝑀𝑊𝑉 queueing system has been inves-
tigated. Assume that the server takes a working vacation
after emptying the system in regular busy period. By using
embedded Markov chain approach and the method of non-
homogeneous and homogeneous difference operator, the
number of customers of the whole system at random slots
has been discussed. This is different from general batch
service queue literatures (excluding customers being served).
The waiting time for an arriving customer and numerical
results are obtained. In the future, further study such as
𝐺𝑒𝑜𝑚

[𝑎]
/𝐺𝑒𝑜𝑚

[𝑏]
/1/𝑀𝑊𝑉 queue will be the research topic

using similar idea and method.
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