18 research outputs found

    Prevalence of Epidermal Conditions in Critically Endangered Indo-Pacific Humpback Dolphins (Sousa chinensis) from the Waters of Western Taiwan

    Get PDF
    The prevalence of epidermal conditions in a small critically endangered population (<100 individuals) of coastal Indo-Pacific humpback dolphins (Sousa chinensis) from the waters of western Taiwan was assessed during a photo-identification study conducted between 2006 and 2010. Of 97 individuals photographically examined, 37% were affected by one or multiple conditions. Besides, mature individuals had significantly higher prevalence than immature ones. Five different skin condition categories were considered, including pox-like lesion, pale lesion, orange film, prolonged ulcer lesion, and nodule on body. This first study to investigate epidermal conditions on S. chinensis in the world offers data for comparison with other studies in the future and new ground for discussion on the health of these animals and the potential impact of anthropogenic activities

    Old Technique -New Evidence: Topical agents for musculo-skeletal injuries

    Get PDF
    The popular use of topical agents for the treatment of musculoskeletal injuries has persisted for centuries but not much scientific evaluations have been done. Since medicinal herbs are particularly popular in Asia, we started a systematic exploration on their choices, and their pharmacological activities; whether transcutaneous transport of bioactive components occur and above all, whether quality clinical evidences could be generated. We found that a search on the vast literature pool would reveal the favourable choices of herbal agents. Biological screening of those selected herbs showed that they probably follow three major common pathways to help with healing after injury, viz, anti-inflammation, pro-angiogenesis and cellular proliferation. Using a simple formula of selected herbs with the ideal bioactivities, evidence based clinical trials could be organized to further prove the efficacy. We have created two such formulae to be put on clinical trial. Our early pilot clinical trials on two minor injuries on the foot and one chronic inflammatory condition have yielded positive data on the value of such topical agents on pain and oedema control, as well as functional maintenance. There was also suggestion of more rapid bone healing. Although limitations exist clear with the small number of study subjects, the positive data and safe application support more studies

    Spray-n-Sense: Sprayable Nanofibers for On-Site Chemical Sensing

    No full text
    A versatile “Spray-n-Sense” sprayable nanofiber technology for on-site chemical detection is demonstrated. Driven by compressed gas, the “Spray-n-Sense” nanofibers, as the name suggests, can be directly sprayed onto any kind or shape of surfaces, while the embedded chemical reporter enables simple colorimetric/fluorometric detection. Herein, nanofibers are sprayed on several surfaces including cardboard, glass, plastic, and rubber. The sensing capabilities of the “Spray-n-Sense” nanofibers are established through the detection of three different analytes including two metal ions (Fe2+ and Fe3+ using 1,10-phenanthroline and curcumin as chromogenic reporters, respectively) and ammonia (using rhodamine-B as a fluorogenic reporter) in aqueous media. Additional to being highly portable, the “Spray-n-Sense” nanofibers show impressive sensor characteristics with a sub-ppm lower limit of detection (LLOD) for Fe2+ and a wide linear working range. Whereas, the LLOD of 6.2 and 32 ppm is achieved for Fe3+ ions and ammonia, respectively. A custom-designed smartphone application enables quantitative analysis for reliable on-site sensing. The selectivity and specificity are imparted by the embedded reporter, and thus allow analyte detection in complex real-life samples and simultaneous detection of multiple chemical species through co-doping. The “Spray-n-Sense” nanofibers also allow for the detection of target analytes in solid samples.</p

    HDAC2 and HDAC5 Up-Regulations Modulate Survivin and miR-125a-5p Expressions and Promote Hormone Therapy Resistance in Estrogen Receptor Positive Breast Cancer Cells

    No full text
    Intrinsic or acquired resistance to hormone therapy is frequently reported in estrogen receptor positive (ER+) breast cancer patients. Even though dysregulations of histone deacetylases (HDACs) are known to promote cancer cells survival, the role of different HDACs in the induction of hormone therapy resistance in ER+ breast cancer remains unclear. Survivin is a well-known pro-tumor survival molecule and miR-125a-5p is a recently discovered tumor suppressor. In this study, we found that ER+, hormone-independent, tamoxifen-resistant MCF7-TamC3 cells exhibit increased expression of HDAC2, HDAC5, and survivin, but show decreased expression of miR-125a-5p, as compared to the parental tamoxifen-sensitive MCF7 breast cancer cells. Molecular down-regulations of HDAC2, HDAC5, and survivin, and ectopic over-expression of miR-125a-5p, increased the sensitivity of MCF7-TamC3 cells to estrogen deprivation and restored the sensitivity to tamoxifen. The same treatments also further increased the sensitivity to estrogen-deprivation in the ER+ hormone-dependent ZR-75-1 breast cancer cells in vitro. Kaplan–Meier analysis and receiver operating characteristic curve analysis of expression cohorts of breast tumor showed that high HDAC2 and survivin, and low miR-125a-5p, expression levels correlate with poor relapse-free survival in endocrine therapy and tamoxifen-treated ER+ breast cancer patients. Further molecular analysis revealed that HDAC2 and HDAC5 positively modulates the expression of survivin, and negatively regulates the expression miR-125a-5p, in ER+ MCF7, MCF7-TamC3, and ZR-75-1 breast cancer cells. These findings indicate that dysregulations of HDAC2 and HDAC5 promote the development of hormone independency and tamoxifen resistance in ERC breast cancer cells in part through expression regulation of survivin and miR-125a-5p

    Decreased Antibiotic Consumption Coincided with Reduction in Bacteremia Caused by Bacterial Species with Respiratory Transmission Potential during the COVID-19 Pandemic

    No full text
    Nonpharmaceutical interventions implemented during the COVID-19 pandemic (2020–2021) have provided a unique opportunity to understand their impact on the wholesale supply of antibiotics and incidences of infections represented by bacteremia due to common bacterial species in Hong Kong. The wholesale antibiotic supply data (surrogate indicator of antibiotic consumption) and notifications of scarlet fever, chickenpox, and tuberculosis collected by the Centre for Health Protection, and the data of blood cultures of patients admitted to public hospitals in Hong Kong collected by the Hospital Authority for the last 10 years, were tabulated and analyzed. A reduction in the wholesale supply of antibiotics was observed. This decrease coincided with a significant reduction in the incidence of community-onset bacteremia due to Streptococcus pyogenes, Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis, which are encapsulated bacteria with respiratory transmission potential. This reduction was sustained during two pandemic years (period 2: 2020–2021), compared with eight pre-pandemic years (period 1: 2012–2019). Although the mean number of patient admissions per year (1,704,079 vs. 1,702,484, p = 0.985) and blood culture requests per 1000 patient admissions (149.0 vs. 158.3, p = 0.132) were not significantly different between periods 1 and 2, a significant reduction in community-onset bacteremia due to encapsulated bacteria was observed in terms of the mean number of episodes per year (257 vs. 58, p p p Staphylococcus aureus or Escherichia coli. Sustained implementation of non-pharmaceutical interventions against respiratory microbes may reduce the overall consumption of antibiotics, which may have a consequential impact on antimicrobial resistance. Rebound of conventional respiratory microbial infections is likely with the relaxation of these interventions

    A Rapid, Simple, Inexpensive, and Mobile Colorimetric Assay COVID-19-LAMP for Mass On-Site Screening of COVID-19

    No full text
    To control the COVID-19 pandemic and prevent its resurgence in areas preparing for a return of economic activities, a method for a rapid, simple, and inexpensive point-of-care diagnosis and mass screening is urgently needed. We developed and evaluated a one-step colorimetric reverse-transcriptional loop-mediated isothermal amplification assay (COVID-19-LAMP) for detection of SARS-CoV-2, using SARS-CoV-2 isolate and respiratory samples from patients with COVID-19 (n = 223) and other respiratory virus infections (n = 143). The assay involves simple equipment and techniques and low cost, without the need for expensive qPCR machines, and the result, indicated by color change, is easily interpreted by naked eyes. COVID-19-LAMP can detect SARS-CoV-2 RNA with detection limit of 42 copies/reaction. Of 223 respiratory samples positive for SARS-CoV-2 by qRT-PCR, 212 and 219 were positive by COVID-19-LAMP at 60 and 90 min (sensitivities of 95.07% and 98.21%) respectively, with the highest sensitivities among nasopharyngeal swabs (96.88% and 98.96%), compared to sputum/deep throat saliva samples (94.03% and 97.02%), and throat swab samples (93.33% and 98.33%). None of the 143 samples with other respiratory viruses were positive by COVID-19-LAMP, showing 100% specificity. Samples with higher viral load showed shorter detection time, some as early as 30 min. This inexpensive, highly sensitive and specific COVID-19-LAMP assay can be useful for rapid deployment as mobile diagnostic units to resource-limiting areas for point-of-care diagnosis, and for unlimited high-throughput mass screening at borders to reduce cross-regional transmission

    DataSheet_1_Safety and immunogenicity of 3 doses of BNT162b2 and CoronaVac in children and adults with inborn errors of immunity.docx

    No full text
    Our study (NCT04800133) aimed to determine the safety and immunogenicity in patients with IEIs receiving a 3-dose primary series of mRNA vaccine BNT162b2 (age 12+) or inactivated whole-virion vaccine CoronaVac (age 3+) in Hong Kong, including Omicron BA.1 neutralization, in a nonrandomized manner. Intradermal vaccination was also studied. Thirty-nine patients were vaccinated, including 16 with homologous intramuscular 0.3ml BNT162b2 and 17 with homologous intramuscular 0.5ml CoronaVac. Two patients received 3 doses of intradermal 0.5ml CoronaVac, and 4 patients received 2 doses of intramuscular BNT162b2 and the third dose with intradermal BNT162b2. No safety concerns were identified. Inadequate S-RBD IgG and surrogate virus neutralization responses were found after 2 doses in patients with humoral immunodeficiencies and especially so against BA.1. Dose 3 of either vaccine increased S-RBD IgG response. T cell responses against SARS-CoV-2 antigens were detected in vaccinated IEI patients by intracellular cytokine staining on flow cytometry. Intradermal third dose vaccine led to high antibody response in 4 patients. The primary vaccination series of BNT162b2 and CoronaVac in adults and children with IEIs should include 3 doses for optimal immunogenicity.</p

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Search for resonant production of strongly coupled dark matter in proton-proton collisions at 13 TeV

    No full text
    The first collider search for dark matter arising from a strongly coupled hidden sector is presented and uses a data sample corresponding to 138 fb1^{−1}, collected with the CMS detector at the CERN LHC, at s \sqrt{s} = 13 TeV. The hidden sector is hypothesized to couple to the standard model (SM) via a heavy leptophobic Z′ mediator produced as a resonance in proton-proton collisions. The mediator decay results in two “semivisible” jets, containing both visible matter and invisible dark matter. The final state therefore includes moderate missing energy aligned with one of the jets, a signature ignored by most dark matter searches. No structure in the dijet transverse mass spectra compatible with the signal is observed. Assuming the Z′ boson has a universal coupling of 0.25 to the SM quarks, an inclusive search, relevant to any model that exhibits this kinematic behavior, excludes mediator masses of 1.5–4.0 TeV at 95% confidence level, depending on the other signal model parameters. To enhance the sensitivity of the search for this particular class of hidden sector models, a boosted decision tree (BDT) is trained using jet substructure variables to distinguish between semivisible jets and SM jets from background processes. When the BDT is employed to identify each jet in the dijet system as semivisible, the mediator mass exclusion increases to 5.1 TeV, for wider ranges of the other signal model parameters. These limits exclude a wide range of strongly coupled hidden sector models for the first time
    corecore