48 research outputs found

    Estimating spatial quantile regression with functional coefficients: A robust semiparametric framework

    Full text link
    This paper considers an estimation of semiparametric functional (varying)-coefficient quantile regression with spatial data. A general robust framework is developed that treats quantile regression for spatial data in a natural semiparametric way. The local M-estimators of the unknown functional-coefficient functions are proposed by using local linear approximation, and their asymptotic distributions are then established under weak spatial mixing conditions allowing the data processes to be either stationary or nonstationary with spatial trends. Application to a soil data set is demonstrated with interesting findings that go beyond traditional analysis.Comment: Published in at http://dx.doi.org/10.3150/12-BEJ480 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Tradeoff Analysis for Optimal Multiobjective Inventory Model

    Get PDF
    Deterministic inventory model, the economic order quantity (EOQ), reveals that carrying inventory or ordering frequency follows a relation of tradeoff. For probabilistic demand, the tradeoff surface among annual order, expected inventory and shortage are useful because they quantify what the firm must pay in terms of ordering workload and inventory investment to meet the customer service desired. Based on a triobjective inventory model, this paper employs the successive approximation to obtain efficient control policies outlining tradeoffs among conflicting objectives. The nondominated solutions obtained by successive approximation are further used to plot a 3D scatterplot for exploring the relationships between objectives. Visualization of the tradeoffs displayed by the scatterplots justifies the computation effort done in the experiment, although several iterations needed to reach a nondominated solution make the solution procedure lengthy and tedious. Information elicited from the inverse relationships may help managers make deliberate inventory decisions. For the future work, developing an efficient and effective solution procedure for tradeoff analysis in multiobjective inventory management seems imperative

    Hidden Markov Models based intelligent health assessment and fault diagnosis of rolling element bearings.

    No full text
    Hidden Markov Models (HMMs) have become an immensely popular tool for health assessment and fault diagnosis of rolling element bearings. The advantages of an HMM include its simplicity, robustness, and interpretability, while the generalization capability of the model still needs to be enhanced. The Dempster-Shafer theory of evidence can be used to conduct a comprehensive evaluation, and Stacking provides a novel training strategy. Therefore, the HMM-based fusion method and ensemble learning method are proposed to increase the credibility of quantitative analysis and optimize classifiers respectively. Firstly, vibration signals captured from bearings are decomposed into intrinsic mode functions (IMFs) using ensemble empirical mode decomposition (EEMD), and then the Hilbert envelope spectra of main components are obtained; Secondly, multi-domain features are extracted as model input from preprocessed signals; Finally, HMM-based intelligent health assessment framework and fault diagnosis framework are established. In this work, the life cycle health assessment modeling is performed using a few training samples, the bearing degradation state is quantitatively evaluated, normal and abnormal samples are effectively distinguished, and the accuracy of fault diagnosis is significantly improved

    Estimating spatial quantile regression with functional coefficients: A robust semiparametric framework

    No full text

    Wind Turbine Blade Icing Diagnosis Using Convolutional LSTM-GRU With Improved African Vultures Optimization

    No full text
    Wind farms are usually located in plateau mountains and northern coastal areas, bringing a high probability of blade icing. Blade icing even leads to blade cracks and turbine collapse. Traditional methods of blade icing diagnosis increase operating costs and have the potential risk of damaging the original mechanical structure. A data-driven model based on a novel convolutional recurrent neural network is proposed in this article. The method can effectively extract hidden features for accurate icing diagnosis. The hyperparameters of the proposed model are optimized by the improved African vultures optimization algorithm (IAVOA). To alleviate the critical data imbalance, the adaptive synthetic (ADASYN) is used to oversample the minority classes of icing status. In comparison to the state-of-the-art classification methods, the proposed method illustrates the outstanding effectiveness in blade icing diagnosis using the sensor data from supervisory control and data acquisition (SCADA) systems. The effectiveness analysis of variables, ablation study, and sensitivity analysis validates the performance of the proposed method

    Prediction of regional wind power generation using a multi-objective optimized deep learning model with temporal pattern attention

    No full text
    Accurate and stable prediction of regional wind power is crucial for optimal scheduling and renewable energy utilization in the power grid. In this paper, a novel multi-objective optimized recurrent neural network with temporal pattern attention (TPA) is proposed to address the randomness and uncertainty of wind farms in regional wind power prediction. Firstly, Taguchi method is applied to select the weather variables from wind farms, reducing redundancy and improving efficiency. Then, the stacked model is constructed using a denoising autoencoder (DAE) and gated recurrent unit (GRU), to improve the robustness and temporal correlation of the hidden states. The TPA is introduced to assign different weights to the hidden states, considering the multivariate relationships at different time steps. Furthermore, the Multi-objective slime mould algorithm (MOSMA) and variable weight multi-objective loss function (VMLF) are developed to optimize DGRU-TPA under multiple objectives to realize accurate and stable prediction. Finally, the experiment results demonstrate that nRMSE, nMAPE, and nSD of the proposed model are reduced by 26.36%, 24.05%, and 21.04% respectively, and qualification rate (QR) is increased by 13.56% compared to other models. The proposed model has achieved superior performance in regional prediction, which is crucial for effective grid management with increasing wind energy

    Some Generalized Entropy Ergodic Theorems for Nonhomogeneous Hidden Markov Models

    No full text
    Entropy measures the randomness or uncertainty of a stochastic process, and the entropy rate refers to the limit of the time average of entropy. The generalized entropy rate in the form of delayed averages can overcome the redundancy of initial information while ensuring stationarity. Therefore, it has better practical value. A Hidden Markov Model (HMM) contains two stochastic processes, a stochastic process in which all states can be observed and a Markov chain in which all states cannot be observed. The entropy rate is an important characteristic of HMMs. The transition matrix of a homogeneous HMM is unique, while a Nonhomogeneous Hidden Markov Model (NHMM) requires the transition matrices to be dependent on time variables. From the perspective of model structure, NHMMs are novel extensions of homogeneous HMMs. In this paper, the concepts of the generalized entropy rate and NHMMs are defined and fully explained, a strong limit theorem and limit properties of a norm are presented, and then generalized entropy ergodic theorems with an almost surely convergence for NHMMs are obtained. These results provide concise formulas for the computation and estimation of the generalized entropy rate for NHMMs

    Risk transmission between equity market of China and its trading partners: new evidence from various financial crises

    No full text
    Purpose: The authors examine the volatility connections between the equity markets of China and its trading partners from developed and emerging markets during the various crises episodes (i.e. the Asian Crisis of 1997, the Global Financial Crisis, the Chinese Market Crash of 2015 and the COVID-19 outbreak). Design/methodology/approach: The authors use the GARCH and Wavelet approaches to estimate causalities and connectedness. Findings: According to the findings, China and developed equity markets are connected via risk transmission in the long term across various crisis episodes. In contrast, China and emerging equity markets are linked in short and long terms. The authors observe that China leads the stock markets of India, Indonesia and Malaysia at higher frequencies. Even China influences the French, Japanese and American equity markets despite the Chinese crisis. Finally, these causality findings reveal a bi-directional causality among China and its developed trading partners over short- and long-time scales. The connectedness varies across crisis episodes and frequency (short and long run). The study\u27s findings provide helpful information for portfolio hedging, especially during various crises. Originality/value: The authors examine the volatility connections between the equity markets of China and its trading partners from developed and emerging markets during the various crisis episodes (i.e. the Asian Crisis of 1997, the Global Financial Crisis, the Chinese Market Crash of 2015 and the COVID-19 outbreak). Previously, none of the studies have examined the connectedness between Chinese and its trading partners\u27 equity markets during these all crises

    The operating conditions for bearings.

    No full text
    Hidden Markov Models (HMMs) have become an immensely popular tool for health assessment and fault diagnosis of rolling element bearings. The advantages of an HMM include its simplicity, robustness, and interpretability, while the generalization capability of the model still needs to be enhanced. The Dempster-Shafer theory of evidence can be used to conduct a comprehensive evaluation, and Stacking provides a novel training strategy. Therefore, the HMM-based fusion method and ensemble learning method are proposed to increase the credibility of quantitative analysis and optimize classifiers respectively. Firstly, vibration signals captured from bearings are decomposed into intrinsic mode functions (IMFs) using ensemble empirical mode decomposition (EEMD), and then the Hilbert envelope spectra of main components are obtained; Secondly, multi-domain features are extracted as model input from preprocessed signals; Finally, HMM-based intelligent health assessment framework and fault diagnosis framework are established. In this work, the life cycle health assessment modeling is performed using a few training samples, the bearing degradation state is quantitatively evaluated, normal and abnormal samples are effectively distinguished, and the accuracy of fault diagnosis is significantly improved.</div

    Testbed of rolling element bearings.

    No full text
    Hidden Markov Models (HMMs) have become an immensely popular tool for health assessment and fault diagnosis of rolling element bearings. The advantages of an HMM include its simplicity, robustness, and interpretability, while the generalization capability of the model still needs to be enhanced. The Dempster-Shafer theory of evidence can be used to conduct a comprehensive evaluation, and Stacking provides a novel training strategy. Therefore, the HMM-based fusion method and ensemble learning method are proposed to increase the credibility of quantitative analysis and optimize classifiers respectively. Firstly, vibration signals captured from bearings are decomposed into intrinsic mode functions (IMFs) using ensemble empirical mode decomposition (EEMD), and then the Hilbert envelope spectra of main components are obtained; Secondly, multi-domain features are extracted as model input from preprocessed signals; Finally, HMM-based intelligent health assessment framework and fault diagnosis framework are established. In this work, the life cycle health assessment modeling is performed using a few training samples, the bearing degradation state is quantitatively evaluated, normal and abnormal samples are effectively distinguished, and the accuracy of fault diagnosis is significantly improved.</div
    corecore