10 research outputs found

    Two Optimization Ways of DDR3 Transmission Line Equal-Length Wiring Based on Signal Integrity

    Get PDF
    As we enter the 5G (5th-Generation) era, the amount of information and data has become increasingly tremendous. Therefore, electronic circuits need to have higher chip density, faster operating speed and better signal quality of transmission. As the carrier of electronic components, the design difficulty of high-speed PCB (Printed Circuit Board) is also increasing. Equal-length wiring is an essential part of PCB design. But now, it can no longer meet the needs of designers. Accordingly, in view of the shortcomings of the traditional equal-length wiring, this article proposes two optimization ways: the "spiral wiring" way and the "double spiral wiring" way. Based on the theoretical analysis of the transmission lines, the two optimization ways take the three aspects of optimizing the layout and wiring space, suppressing crosstalk and reducing reflection as the main points to optimize the design. Eventually, this article performs simulation and verification of schematic diagram and PCB of the optimal design by using HyperLynx simulation software. The simulation results show that these two ways not only improve the flexibility of the transmission line layout, but also improve the signal integrity of the transmission lines. Of course, this also proves the feasibility and reliability of the two optimized designs

    Two Optimization Ways of DDR3 Transmission Line Equal-Length Wiring Based on Signal Integrity

    Get PDF
    As we enter the 5G (5th-Generation) era, the amount of information and data has become increasingly tremendous. Therefore, electronic circuits need to have higher chip density, faster operating speed and better signal quality of transmission. As the carrier of electronic components, the design difficulty of high-speed PCB (Printed Circuit Board) is also increasing. Equal-length wiring is an essential part of PCB design. But now, it can no longer meet the needs of designers. Accordingly, in view of the shortcomings of the traditional equal-length wiring, this article proposes two optimization ways: the "spiral wiring" way and the "double spiral wiring" way. Based on the theoretical analysis of the transmission lines, the two optimization ways take the three aspects of optimizing the layout and wiring space, suppressing crosstalk and reducing reflection as the main points to optimize the design. Eventually, this article performs simulation and verification of schematic diagram and PCB of the optimal design by using HyperLynx simulation software. The simulation results show that these two ways not only improve the flexibility of the transmission line layout, but also improve the signal integrity of the transmission lines. Of course, this also proves the feasibility and reliability of the two optimized designs

    An Enhanced IEEE1588 Clock Synchronization for Link Delays Based on a System-on-Chip Platform

    Get PDF
    The clock synchronization is considered as a key technology in the time-sensitive networking (TSN) of 5G fronthaul. This paper proposes a clock synchronization enhancement method to optimize the link delays, in order to improve synchronization accuracy. First, all the synchronization dates are filtered twice to get the good calculation results in the processor, and then FPGA adjust the timer on the slave side to complete clock synchronization. This method is implemented by Xilinx Zynq UltraScale+ MPSoC (multiprocessor system-on-chip), using FPGA+ARM software and hardware co-design platform. The master and slave output Pulse Per-Second (PPS) signals. The synchronization accuracy was evaluated by measuring the time offset between PPS signals. Contraposing the TSN, this paper compares the performance of the proposed scheme with some previous methods to show the efficacy of the proposed work. The results show that the slave clock of proposed method is synchronized with the master clock, leading to better robustness and significant improvement in accuracy, with time offset within the range of 40 nanoseconds. This method can be applied to the time synchronization of the 5G open fronthaul network and meets some special service needs in 5G communication

    An Enhanced IEEE1588 Clock Synchronization for Link Delays Based on a System-on-Chip Platform

    Get PDF
    The clock synchronization is considered as a key technology in the time-sensitive networking (TSN) of 5G fronthaul. This paper proposes a clock synchronization enhancement method to optimize the link delays, in order to improve synchronization accuracy. First, all the synchronization dates are filtered twice to get the good calculation results in the processor, and then FPGA adjust the timer on the slave side to complete clock synchronization. This method is implemented by Xilinx Zynq UltraScale+ MPSoC (multiprocessor system-on-chip), using FPGA+ARM software and hardware co-design platform. The master and slave output Pulse Per-Second (PPS) signals. The synchronization accuracy was evaluated by measuring the time offset between PPS signals. Contraposing the TSN, this paper compares the performance of the proposed scheme with some previous methods to show the efficacy of the proposed work. The results show that the slave clock of proposed method is synchronized with the master clock, leading to better robustness and significant improvement in accuracy, with time offset within the range of 40 nanoseconds. This method can be applied to the time synchronization of the 5G open fronthaul network and meets some special service needs in 5G communication

    Global genetic diversity, introgression, and evolutionary adaptation of indicine cattle revealed by whole genome sequencing

    Get PDF
    Indicine cattle, also referred to as zebu (Bos taurus indicus), play a central role in pastoral communities across a wide range of agro-ecosystems, from extremely hot semiarid regions to hot humid tropical regions. However, their adaptive genetic changes following their dispersal into East Asia from the Indian subcontinent have remained poorly documented. Here, we characterize their global genetic diversity using high-quality whole-genome sequencing data from 354 indicine cattle of 57 breeds/populations, including major indicine phylogeographic groups worldwide. We reveal their probable migration into East Asia was along a coastal route rather than inland routes and we detected introgression from other bovine species. Genomic regions carrying morphology-, immune-, and heat-tolerance-related genes underwent divergent selection according to Asian agro-ecologies. We identify distinct sets of loci that contain promising candidate variants for adaptation to hot semi-arid and hot humid tropical ecosystems. Our results indicate that the rapid and successful adaptation of East Asian indicine cattle to hot humid environments was promoted by localized introgression from banteng and/or gaur. Our findings provide insights into the history and environmental adaptation of indicine cattle

    Comparisons of Combined Oxidant Capacity and Redox-Weighted Oxidant Capacity in Their Association with Increasing Levels of COVID-19 Infection

    No full text
    Background: Ozone (O3) and nitrogen dioxide (NO2) are substances with oxidizing ability in the atmosphere. Only considering the impact of a single substance is not comprehensive. However, people’s understanding of “total oxidation capacity” (Ox) and “weighted average oxidation” (Oxwt) is limited. Objectives: This investigation aims to assess the impact of Ox and Oxwt on the novel coronavirus disease (COVID-19). We also compared the relationship between the different calculation methods of Ox and Oxwt and the COVID-19 infection rate. Method: We recorded confirmed COVID-19 cases and daily pollutant concentrations (O3 and NO2) in 34 provincial capital cities in China. The generalized additive model (GAM) was used to analyze the nonlinear relationship between confirmed COVID-19 cases and Ox and Oxwt. Result: Our results indicated that the correlation between Ox and COVID-19 was more sensitive than Oxwt. The hysteresis effect of Ox and Oxwt decreased with time. The most obvious statistical data was observed in Central China and South China. A 10 µg m−3 increase in mean Ox concentrations were related to a 23.1% (95%CI: 11.4%, 36.2%) increase, and a 10 µg m−3 increase in average Oxwt concentration was related to 10.7% (95%CI: 5.2%, 16.8%) increase in COVID-19. In conclusion, our research results show that Ox and Oxwt can better replace the single pollutant research on O3 and NO2, which is used as a new idea for future epidemiological research

    MTOR Variation Related to Heat Resistance of Chinese Cattle

    No full text
    With the inexorable rise of global temperature, heat stress deserves more and more attention in livestock agriculture. Previous studies have shown that the mechanistic target of rapamycin (MTOR) (NC_037343.1:c.2062G>C) gene contributes to the repair of DNA damage repair and is associated with the adaptation of camels in dry and hot environments. However, it is unknown whether this mutation is related to the heat tolerance of Chinese cattle. In this study, PCR and sequencing were used to type the mutation locus in 1030 individuals of 37 cattle breeds. The analysis results showed that the frequency of G allele of the locus gradually diminished from the northern group to the southern group of native Chinese cattle, whereas the frequency of the C allele showed an opposite pattern, displaying a significant geographical difference across native Chinese cattle breeds. Additionally, an analysis of the locus in Chinese indigenous cattle revealed that this SNP was significantly associated with mean annual temperature (T), relative humidity (RH) and temperature humidity index (THI) (p < 0.01), suggesting that cattle with C allele was distributed in regions with higher T, RH and THI. In conclusion, this study proved that the mutation of MTOR gene in Chinese cattle could be associated with the heat tolerance

    Global genetic diversity, introgression, and evolutionary adaptation of indicine cattle revealed by whole genome sequencing

    Get PDF
    Abstract Indicine cattle, also referred to as zebu (Bos taurus indicus), play a central role in pastoral communities across a wide range of agro-ecosystems, from extremely hot semiarid regions to hot humid tropical regions. However, their adaptive genetic changes following their dispersal into East Asia from the Indian subcontinent have remained poorly documented. Here, we characterize their global genetic diversity using high-quality whole-genome sequencing data from 354 indicine cattle of 57 breeds/populations, including major indicine phylogeographic groups worldwide. We reveal their probable migration into East Asia was along a coastal route rather than inland routes and we detected introgression from other bovine species. Genomic regions carrying morphology-, immune-, and heat-tolerance-related genes underwent divergent selection according to Asian agro-ecologies. We identify distinct sets of loci that contain promising candidate variants for adaptation to hot semi-arid and hot humid tropical ecosystems. Our results indicate that the rapid and successful adaptation of East Asian indicine cattle to hot humid environments was promoted by localized introgression from banteng and/or gaur. Our findings provide insights into the history and environmental adaptation of indicine cattle

    Global genetic diversity, introgression, and evolutionary adaptation of indicine cattle revealed by whole genome sequencing

    No full text
    : Indicine cattle, also referred to as zebu (Bos taurus indicus), play a central role in pastoral communities across a wide range of agro-ecosystems, from extremely hot semiarid regions to hot humid tropical regions. However, their adaptive genetic changes following their dispersal into East Asia from the Indian subcontinent have remained poorly documented. Here, we characterize their global genetic diversity using high-quality whole-genome sequencing data from 354 indicine cattle of 57 breeds/populations, including major indicine phylogeographic groups worldwide. We reveal their probable migration into East Asia was along a coastal route rather than inland routes and we detected introgression from other bovine species. Genomic regions carrying morphology-, immune-, and heat-tolerance-related genes underwent divergent selection according to Asian agro-ecologies. We identify distinct sets of loci that contain promising candidate variants for adaptation to hot semi-arid and hot humid tropical ecosystems. Our results indicate that the rapid and successful adaptation of East Asian indicine cattle to hot humid environments was promoted by localized introgression from banteng and/or gaur. Our findings provide insights into the history and environmental adaptation of indicine cattle
    corecore