375 research outputs found

    Effect of bone morphogenetic protein-2 on diabetic retinopathy and its mechanism of action

    Get PDF
    Purpose: To investigate the effect of bone morphogenetic protein-2 (BMP-2) on human retinal vascular endothelial cells (RECs) and human retinal pigment epithelial cells (RPE) cultured in high glucose (HG) in vitro, and the underlying mechanism. Methods: Cell counting kit-8 (CCK-8) was used to determine cell proliferation while Western blot was used to assay the expressions of extracellular matrix and angiogenesis-related factors, Expressions of cytokines and chemokines were assessed by quantitative real time polymerase chain reaction (qRTPCR) and enzyme-linked immunosorbent assay (ELISA). Changes in Smad, ERK, JNK and p38MAPK signal pathway were measured by transfection and interference. Results: The level of expression of BMP-2 in HG group was higher than that in normal glucose (NG) culture group. The expressions of angiogenesis-related factors i.e. vascular endothelial growth factor (VEGF) and intercellular cell adhesion molecule-1 (ICAM1), pro-inflammatory factors i.e. IL-6 and chemokine monocyte chemokine protein-1 (MCP1), increased significantly in HG group compared to NG and HG + BMP-2 groups. Phosphorylation of Smad1/5/8 and activation of ERK, JNK and p38MAPK signaling pathways were enhanced by BMP-2. Conclusion: These results suggest that BMP-2 promotes angiogenesis and enhances the expressions of inflammatory cytokines via Smad signaling pathway

    Regulatory T Cells Contribute to HIV-1 Reservoir Persistence in CD4 + T Cells Through Cyclic Adenosine Monophosphate-Dependent Mechanisms in Humanized Mice in Vivo

    Get PDF
    Background. Regulatory T cells (Tregs) suppress T-cell immune activation and human immunodeficiency virus type 1 (HIV-1) replication, but the role of Tregs in HIV-1 reservoir persistence is poorly defined. Methods. Tregs were depleted by denileukin diftitox in humanized mice with chronic HIV-1 infection. Viral replication in lineage cells was determined by p24 expression. Levels of HIV-1 RNA and DNA in human cells, as well as replication-competent-virus- producing cells, were measured to quantified viral replication and reservoirs. Results. Treg depletion resulted in a blip of HIV-1 replication in T cells but not in myeloid cells. The major activated reservoir cells were memory CD4+ T cells in vivo. Interestingly, the transient activation of viral replication led to HIV-1 reservoir reduction after viremia resuppression, as indicated by the quantity of HIV-1 DNA and replication-competent-virus-producing cells. Furthermore, we demonstrated that Tregs use cyclic adenosine monophosphate (cAMP)-dependent protein kinase A pathway to inhibit HIV-1 activation and replication in resting conventional T cells in vitro. Conclusion. Tregs suppress HIV-1 replication in T cells and contribute to HIV-1 reservoir persistence. cAMP produced in Tregs is involved in their suppression of viral gene activation and expression. Treg depletion combined with combination antiretroviral therapy provides a novel strategy for HIV-1 cure

    Type I interferons suppress viral replication but contribute to T cell depletion and dysfunction during chronic HIV-1 infection

    Get PDF
    The direct link between sustained type I interferon (IFN-I) signaling and HIV-1-induced immunopathogenesis during chronic infection remains unclear. Here we report studies using a monoclonal antibody to block IFN-α/β receptor 1 (IFNAR1) signaling during persistent HIV-1 infection in humanized mice (hu-mice). We discovered that, during chronic HIV-1 infection, IFNAR blockade increased viral replication, which was correlated with elevated T cell activation. Thus, IFN-Is suppress HIV-1 replication during the chronic phase but are not essential for HIV-1-induced aberrant immune activation. Surprisingly, IFNAR blockade rescued both total human T cell and HIV-specific T cell numbers despite elevated HIV-1 replication and immune activation. We showed that IFNAR blockade reduced HIV-1-induced apoptosis of CD4+ T cells. Importantly, IFNAR blockade also rescued the function of human T cells, including HIV-1-specific CD8+ and CD4+ T cells. We conclude that during persistent HIV-1 infection, IFN-Is suppress HIV-1 replication, but contribute to depletion and dysfunction of T cells

    Enhancing Representation in Medical Vision-Language Foundation Models via Multi-Scale Information Extraction Techniques

    Full text link
    The development of medical vision-language foundation models has attracted significant attention in the field of medicine and healthcare due to their promising prospect in various clinical applications. While previous studies have commonly focused on feature learning at a single learning scale, investigation on integrating multi-scale information is lacking, which may hinder the potential for mutual reinforcement among these features. This paper aims to bridge this gap by proposing a method that effectively exploits multi-scale information to enhance the performance of medical foundation models. The proposed method simultaneously exploits features at the local, instance, modality and global aspects, facilitating comprehensive representation learning within the models. We evaluate the effectiveness of the proposed method on six open-source datasets across different clinical tasks, demonstrating its ability to enhance the performance of medical foundation models

    Specific activation in vivo of HIV-1 by a bromodomain inhibitor from monocytic cells in humanized mice under antiretroviral therapy

    Get PDF
    Combination antiretroviral therapy (cART) effectively suppresses HIV-1 replication and enables HIV-infected individuals to live long, productive lives. However, the persistence of HIV-1 reservoirs of both T and myeloid cells with latent or low-replicating HIV-1 in patients under cART makes HIV-1 infection an incurable disease. Recent studies have focused on the development of strategies to activate and purge these reservoirs. Bromodomain and extraterminal domain proteins (BETs) are epigenetic readers involved in modulating gene expression. Several bromodomain inhibitors (BETi) are reported to activate viral transcription in vitro in HIV-1 latency cell lines in a P-TEFb (CDK9/cyclin T1)-dependent manner. Little is known about BETi efficacy in activating HIV-1 reservoir cells under cART in vivo. Here we report that a BETi (I-BET151) efficiently activated HIV-1 reservoirs under effective cART in humanized mice in vivo. Interestingly, I-BET151 during suppressive cART in vivo activated HIV-1 gene expression only in monocytic cells and not in CD4 T cells. We further demonstrate that BETi preferentially enhanced HIV-1 gene expression in monocytic cells rather than in T cells and that whereas CDK9 was involved in activating HIV-1 by I-BET151 in both monocytic and T cells, CDK2 enhanced HIV-1 transcription in monocytic cells but inhibited it in T cells. Our findings reveal a role for CDK2 in differential modulation of HIV-1 gene expression in myeloid cells and in T cells and provide a novel strategy to reactivate monocytic reservoirs with BETi during cART. IMPORTANCE Bromodomain inhibitors have been reported to activate HIV-1 transcription in vitro, but their effect on activation of HIV-1 reservoirs during cART in vivo is unclear. We found that BETi (I-BET151) treatment reactivated HIV-1 gene expression in humanized mice during suppressive cART. Interestingly, I-BET151 preferentially reactivated HIV-1 gene expression in monocytic cells, but not in CD4 T cells, in cART-treated mice. Furthermore, I-BET151 significantly increased HIV-1 transcription in monocytic cells, but not in HIV-1-infected CD4 T cells, via CDK2-dependent mechanisms. Our findings suggest that BETi can preferentially activate monocytic HIV-1 reservoir cells and that a combination of reservoir activation agents targeting different cell types and pathways is needed to achieve reactivation of different HIV-1 reservoir cells during cART

    Glycosylphosphatidylinositol-Anchored Anti-HIV scFv Efficiently Protects CD4 T Cells from HIV-1 Infection and Deletion in hu-PBL Mice

    Get PDF
    ABSTRACT Despite success in viral inhibition and CD4 T cell recovery by highly active antiretroviral treatment (HAART), HIV-1 is still not curable due to the persistence of the HIV-1 reservoir during treatment. One patient with acute myeloid leukemia who received allogeneic hematopoietic stem cell transplantation from a homozygous CCR5 Δ32 donor has had no detectable viremia for 9 years after HAART cessation. This case has inspired a field of HIV-1 cure research focusing on engineering HIV-1 resistance in permissive cells. Here, we employed a glycosylphosphatidylinositol (GPI)-scFv X5 approach to confer resistance of human primary CD4 T cells to HIV-1. We showed that primary CD4 T cells expressing GPI-scFv X5 were resistant to CCR5 (R5)-, CXCR4 (X4)-, and dual-tropic HIV-1 and had a survival advantage compared to control cells ex vivo . In a hu-PBL mouse study, GPI-scFv X5-transduced CD4 T cells were selected in peripheral blood and lymphoid tissues upon HIV-1 infection. Finally, GPI-scFv X5-transduced CD4 T cells, after being cotransfused with HIV-infected cells, showed significantly reduced viral loads and viral RNA copy numbers relative to CD4 cells in hu-PBL mice compared to mice with GPI-scFv AB65-transduced CD4 T cells. We conclude that GPI-scFv X5-modified CD4 T cells could potentially be used as a genetic intervention against both R5- and X4-tropic HIV-1 infections. IMPORTANCE Blocking of HIV-1 entry is one of most promising approaches for therapy. Genetic disruption of the HIV-1 coreceptor CCR5 by nucleases in T cells is under 2 clinical trials and leads to reduced viremia in patients. However, the emergence of viruses using the CXCR4 coreceptor is a concern for therapies applying single-coreceptor disruption. Here, we report that HIV-1-permissive CD4 T cells engineered with GPI-scFv X5 are resistant to R5-, X4-, or dual-tropic virus infection ex vivo . In a preclinical study using hu-PBL mice, we show that CD4 T cells were protected and that GPI-scFv X5-transduced cells were selected in HIV-1-infected animals. Moreover, we show that GPI-scFv X5-transduced CD4 T cells exerted a negative effect on virus replication in vivo . We conclude that GPI-scFv X5-modified CD4 T cells could potentially be used as a genetic intervention against both R5- and X4-tropic HIV-1 infections
    corecore