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Abstract- Researchers have done much around how to measure trust degrees or levels by local and 
global style in a given distributed network. However, how to infer trust degree for a strange node 
efficiently in a large-scale distributed environment was little done. This paper focuses on this problem, 
and proposes a novel trust model based on balance theory and probability theory. We firstly design a 
simple direct trust model for evidence computing, then construct trust relations network and trust 
inference network based on direct trust network. In order to discover trusted evidence chains during 
complex relations, we design two inference rules and propose mathematics models to infer indirect trust 
value based on Markov chain theory. Simulations proved the rightness and effectiveness in intensive 
trust relations environment and intensive distrust environment. 
 
Index terms: trust model, trust inference, peer-to-peer security, distributed system, trusted evidence chain, 

trust probability, peer-to-peer network. 
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I. INTRODUCTION 

 

As one of the important components of Internet, peer-to-peer networks make a significant impact 

on Internet Applications, such as P2P community, P2P search engine, P2P files sharing, and P2P 

media service, due to openness and anonymity. Meanwhile, benefits from principles of P2P 

networks, P2P E-commerce systems (e.g. eBay) and P2P loan systems (e.g. Zopa.com) are also 

popular recently. However, some urgent problems regarding the availability and security of P2P 

networks remain unsolved, such as malicious attacking, team malicious cheating, intellectual 

property rights, selfish and routing attacking in P2P [1,2,3]. Trust management has been 

emerging as an essential complementary to security mechanisms of P2P systems. A well-defined 

trust model can provide meaningful decision support and help customer reduce possible risk 

during an Internet transaction. 

Like trust and reputation in social networks, trust evaluation in P2P systems is based on 

communication histories. We call these histories trust evidences. Trust models are divided into 

two categories based on the way evidences are aggregated from an evaluator’s perspective [4, 5]. 

They are local/direct trust model and global/indirect trust model. Local or direct trust models use 

the firsthand evidences of destination nodes [15, 16], while global or indirect trust models usually 

come from recommendations or references to destinations [6-14]. As shown in Figure 1. Alice 

can evaluate Bob’s trust probability directly (Figure 1(a)) while there are direct evidences for 

Bob. In Figure 1(b), Alice can also evaluate indirect trustworthiness of Bob by computing direct 

trust values of <Alice, Carol> and <Carol, Bob>. Indirect trust models are more complex than 

direct models usually based on direct trust value. 
Alice Bob 

(a) Trust Evaluation Directly 

Alice Bob 

Carol

(b) Trust Evaluation Indirectly  
Figure 1.  Trust Evaluation 
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To compute indirect trust by traditional trust models, a trustor needs to aggregate all of the 

trustee’s trust evidences, and then uses algorithms to compute or infer indirect trust degree.  

Aberer and Despotovic [6] proposed a complaint-based trust inference method for a distributed 

P2P system, due to the lack of incentives for submitting feedbacks. Its complaint-only trust 

metric runs in few limited cases and is over-sensitive to the skewed distribution of the 

community and to several misbehaviors of the system. Although this mechanism has some 

limitations, it is the very early trust model for P2P E-commerce. Kamvar et al. presented the 

EigenTrust reputation system [7] to infer a unique global trust in a very distributed way by 

history. Such a global model does not need an administration center, difficult to guarantee a fast 

and secure convergence when computing the global trust. Nevertheless, it inspires our works. 

Dou and Wang et al. [8] improved the EigenTrust in computing convergence and model security. 

However, there remains an efficiency problem and its security mechanism is only from 

punishment and certification. Xiong and Liu [9] proposed a PeerTrust model with three basic 

trust parameters and two adaptive factors, and then define a general trust metric to combine them 

efficiently. Jøsang et al. [10] proposed a trust inference method for simplifying a complex 

network to express it in a series of parallel network. This solution may lead to the loss of trust 

information. They proposed an edge splitting method in the further works [11] to address this 

problem. Nevertheless, this method is valid only on a simple trust network and invalid on 

complex trust networks. 

Gradually, researchers began to infer trust degree with multi-dimensional evidence factors. Wang 

and Wu [12] proposed a multi-dimensional evidence-based trust management system with multi-

trusted paths (MeTrust for short) to conduct trust computation on any arbitrarily complex trusted 

graph. The trust computation in MeTrust has three tiers, namely, the node tier, the path tier, and 

the graph tier. It is an excellent trust model. However, it does not provide distributed storage 

structure for P2P system. Jiang at el. [13] presented a novel reputation-based trust mechanism for 

P2P e-commerce systems. In this mechanism, one peer has two kinds of reputations, local 

reputations and global reputations. To compute the local and global reputations precisely and to 

obtain stronger resistibility to attacks as well, they use many comprehensive factors in computing 

trust value in the mechanism. Anyway, this model is a comprehensive mechanism. However, its 

time factor is only linear and there is no clear method to resist team malicious behaviors. Tan and 

Cheng et al. [14] presented a global trust model with correlation factor based on communication 
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history, and improved the time factor with exponential equation. It shows a rational history vector 

and presents three trust models with multi-dimensional trust factors. 

However, all of the above trust models face a common problem, that is, models are too difficult 

or infeasible to compute the indirect trust when no trusted recommendations happen or no (or 

sparse) common nodes' histories exist between trustor and trustee. Trust chain-based inference is 

quite a new method for a trustor to compute a trustee's indirect trust only according to the direct 

local trust relationships. We need to discover trusted evidence chains from trustor to trustee in a 

direct trust network firstly. There are two kinds of computation method usually used to infer the 

indirect trust by trusted chains. The first one is based on multiplication, which multiplies all 

direct trust degrees to obtain the trustee's final trust degree while the second one selects max or 

min trust value or average trust value from the trusted chain instead. However, the multiplication 

model will lead the result to be very small; even if the result is within the range of 0 and 1, it is 

not consistent with objective facts. In contrast, the second method ignores the importance of 

contribution from trusted nodes that have higher trust degree. 

With these research problems in mind, we propose a new trust model based on trust and distrust 

information. We use a famous social psychological theory named “balance theory” [17] to design 

inference rules in this paper, and model a series of inference method by probability to compute 

indirect trust value. During the sparse history situation or between quite strange nodes, the 

proposed scheme can run well and infer trusted evidence chains relatively rational. 

In the remainder of the paper, we will introduce modeling and definitions firstly in the next 

section. Section III describes the inference algorithms for proposed scheme, while the simulations 

and results follow in section IV, with conclusions afterwards in section V. 

 

II. MODELING AND DEFINITIONS 

 

a. Direct trust model 

In this section, we design a very simple direct trust model by communication history that was 

presented in our former work [18]. Consider Sij as the successful transactions amount between 

node <i, j>, while Fij as the failed transactions amount. Then, let 
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ij
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i j

⎧ ≠⎪ += ⎨
⎪ =⎩

(1) 

, 

which means the local trust degree of node j from the perspective of node i. By the way, integer 

number represents node identification in this paper, such as integer i and j. 

By the way, although we have proposed more complex trust models in [14] with multi-

dimensional factors, we only need a very simple direct trust model here since the purpose of this 

paper is to design a new inference algorithm for indirect trust. 

b. Trust relations network 

The above direct trust model could easily compute direct trust value for a node, and a P2P 

network G=<V, E> with such direct trust degrees would be improved to be a weighted network 

graph as G=<V, E, W>. We call such a network “trust relations network” in this paper. 

Definition 1. A trust relations network is a directed graph GTrn=<V, E, W>, where V is the set of 

nodes and E={<i,j>|i→j} is the set of the directed relations between nodes; let 

. Figure 2(a) shows a simple trust 

relations network. 
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Figure 2.  A simple trust relations network 
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Sometimes, we need to focus on relations of only one node. Then, such a relations network is a 

sub graph of trust relations network. 

Definition 2. A local trust relations network for a given node i  is a sub-set of , 

where .  in  are subsets of  in  separately. 

 represents a directed graph that starts with node i. As it shows, the trust relations 

network in Figure 2(a) is also a local trust relations network for node 1. 

( )LTrnG i TrnG

( ) ', ', ',LTrnG i V E W i=< > ', ', 'V E W ( )LTrnG i TrnG, ,V E W

( )LTrnG i

 

c. Local trust inference network 

In practical networks, each node fixes a trust threshold according to its practical requirements. 

Using ( )iτ  to be personalized trust threshold of node i, so that node can make sure trustees are 

trustworthy or not. In order to infer from trust relations network for node i, we should convert the 

 into a trust inference network firstly.  ( )LTrnG i

Definition 3. A local trust inference network for a given node i is a directed graph to represent 

trust or distrust relations in , that is ( )L TING − i ( ) ', ', ,L TING i V E Opers i− =< > , where 

, ( , )
( , )

, ( , )
when dT i j i

Opers i j
when dT i j i

( )
( )

τ
τ

+ ≥⎧
= ⎨− <⎩

, and "+" means trust while "-" means distrust. Figure 2(b) 

is a local trust inference network converted from Figure 2(a), assuming that all nodes fix trust 

threshold as 0.5. 

 

d. Trust inference rules 

Balance Theory [17] is a motivational theory of attitude change, proposed by Fritz Heider in 

1958. It conceptualizes the cognitive consistency motive as a drive toward psychological balance. 

The consistency motive is an urge to maintain one's values and beliefs over time. Heider 

proposed that liking relationships were balanced. As shown in Figure 3, each vertex of the 

triangle has a positive or negative relationship with the other two vertices. To judge the status of 

the triangle, we first pick up signs of the three edges (positive be 1, negative be -1), then multiply 

the three signs. If the result is "1", the triangle is balanced. Otherwise, the triangle is unbalanced. 

So, triangles with three positive signs (T3) or two negative signs (T1) tend to be balanced. On the 

contrary, triangles with two positive signs (T2) or three negative signs (T0) tend to be unbalanced. 

J. Leskovec et al found the universality of T3 and T1 in real trust networks [19]. 
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Figure 3.  Balance and unbalance relations 

According to balance theory, we can indicate that node A trusts node C if node A trusts node B 

and B trusts C. This result is consistent with case T3 in Figure 3. Another situation is that if A 

distrusts B, but B distrusts C, we can indicate A trusts C, which is consistent with case T1 in 

Figure 3. Therefore, we design two important rules for trust inference, just as shown in Figure 4. 

( ) ( ) ( )
( ) ( ) ( ) ⎭

⎬
⎫

⎩
⎨
⎧

+⇒−∧−
+⇒+∧+

=
CACBBArule
CACBBArule

Rules
:2
:1

, 
(2) 

where A(+)B means A trusts B and A(-)B means A distrusts B. Rule 1 is usually used to find 

trusted evidence chains while rule 2 is usually used to get more trusted pairs. 

 

 
Figure 4.  Inference rules 

On the basis of the above definitions, we can define how to infer trust value from trust relations 

networks.  

Definition 4. Let  be inference process, which means node i can 

infer trust value of node j in the trust inference network , where i is the inference source 

node while j is the sink node. 

( , ) ( ), ,L TINTI i j G i Rules j−=< >

( )L TING − i

Now, we should consider how to evaluate the direct trust degree of Alice to Bob when Alice 

infers Bob to be a trusted node according to the inference rules. However, we do not consider the 

situation in rule 1 since we will use probability theory to compute the trust value.  
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In the situation of rule 2, Alice distrusts Carol while Carol distrusts Bob. We infer that Alice 

could trust Bob to some extent. Thus, let 

2 ( , , ) ( )rdT i j iτ− − + = (3) , 

where  here means node i could trust node j according to rule 2, and trust degree of node j in 

perspective of node i is the personalized trust threshold value 

2rdT

( )iτ  of node i. 

 

e. Trust inference level 

There may be a long distance path from source node to sink node. In order to improve inference 

efficiency, we design a trust inference level in our scheme. 

Definition 5.  Let  be the inference deep degree. According to the small world theory “six 

degrees of separation”, that everyone is on average approximately six steps away, by way of 

introduction, from any other person on earth, so that a chain of "a friend of a friend" statements 

can be made, on average, to connect any two people in six steps or fewer. So, we assume 

 to help the search efficiency. Figure 5 shows the level demo. 

( )L i

( ) 7L i ≤

 
Figure 5.  The hierarchy model of trust relations network 

In our opinion, any connections are useful for the proposed scheme. Thus, we do not reduce any 

relations in the trust relations network to provide enough information for trust inference. 

However, different level would have different impact on the final trust degree, and deeper level 

should return less impact value. Therefore, we design a level factor. 

Definition 6. Let ( )Lf x  denote level factor with decreasing exponential function, that is 

)](,1[,1)( 1)( iLxwhereexf iLx
L ∈−= −−

, (4) 

L=2 L=3 L=4 L=5 L=6L=1 

i

L=7 
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Figure 6 shows the level factor. 
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Figure 6.  Level factor 

Obviously, (1) (2) ( ( ))L L Lf f f> > >K L i . In addition, the factor decreases drastically when level 

x≥6. 

 

f. Trusted evidence chain 

A trusted evidence chain is a directed chain from source node to sink node, and any previous 

node trusts its succeeding node in the chain. Trusted evidence chains are basis for trust inference. 

Let TEC(i, j) be a trusted evidence chain from node i to node j. We design an algorithm to 

discover TEC (trusted evidence chain) in local trust relations network. 

Algorithm 1: program DiscoverTEC(i, j) 

(1)While (L(i) >0) 

(2)    Converting GLTrn(i) into G (i) according to each node trust threshold value LTIN

(3)    L(I) ←L(i)+1 

(4)End 

(5)SPath: Search path from node i to node j in G (i) LTIN

(6)IniTEC[]← path 

(7)Goto SPath if more paths exist 

(8)For k←1 to length(IniTEC) do 
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(9)    Convert IniTEC[k] by rules 1 and rules 2 to a new inference path. 

(10)   InferTEC[]←new inference path from i to j 

(11) End for 

(12) For k←1 to length(InferTEC) do 

(i) directly during path InferTEC[k] then (13)    if relation “+” is mapped from GLTrn

(14)        update InferTEC[k] by mapping “+” into the origin direct trust value in G (i) LTrn

(15)    Else 

(16)        update InferTEC[k] by fixing “+” with direct trust value by equation (3) 

(17)    End if 

(18)    TEC[]←updated InferTEC[k] 

(19) End for 

(20) Return TEC[] 

End. 

According to Algorithm 1, we finally get trusted evidence chains with direct trust value. Figure 7 

shows the mapping processes with respect to only one TEC. 

 
Figure 7.  Demo of mapping processes of TEC 

 

III. TRUST INFERENCE WITH PROBABILITY THEORY  

 

a. Trust Inference for single TEC path 

Markov chain describes the fact that the current state of the node is just associated with the 

adjacent node and the trust evidence chain (TEC) is corresponded to this Markov property. In 

Markov model, the transfer probability of Markov chain has k steps, denoted as 

{ ( ) | ( ) }p X n k j X n i+ = = , which means that the condition probability in state i to j after k-step. 

According to Markov model, we could calculate the TEC(i, j) by the following equation, 

TEC(+/-) 

TEC(value) 

1 103 9 8 + - + + -

+

6

Mapping

1 103 9 8 0.7 0.5 0.5

v(predict) 
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∏
=

+−+=
)(

1

),1(),(
iL

k
TEC kikipjip (5) 

, 

However, the above equation will return a very small (even to zero) value to TEC(i,j) because of 

too many multiplication operations, and it's not objective. Each node should have confidence 

with its trust evaluation, and different transfer levels should have different level factor, yet the 

equation (5) does not consider any of them.  

Moreover, confidence is the confident level of the trust evaluation value. According to the degree 

of the confidence, we divide the trust level into three categories, NT(Not very Trust), GT(General 

Trust) and VT(Very Trust). 

Assume  is the cut-off point of NT and GT while [0,1]α ∈ [0,1]β ∈  is the cut-off point of GT 

and VT. The range of the direct trust values in TEC(i, j) is 

(min)(max) PPRk −= (6) , 

where P(max) is the maximum direct trust value among TEC(i, j), and P(min) is the minimum. Then, 

3/(min) kRP +=α (7) , 

3/(max) kRP −=β (8) . 
So, (0, ], ( , ]NT GTα α β∈ ∈  and ( ,1]VT β∈ . 

Let C(i,j) be the confidence of direct trust evaluation from node i to node j, that is, 

(max)
(max)

1 , ( , )
1 ( ( , ))

1( , ) , ( , )
1 ( ( , ))

1 , ( , )
1 ( ( , ))

if dT i j NT
dT i j

C i j if dT i j GT
dT i j

P if dT i j VT
P dT i j

α
α

β
β

⎧
× ∈⎪ + −⎪

⎪
= ×⎨ + −⎪
⎪

× ∈⎪ + −⎩

∈ (9) 

, 

At last, we could adjust the equation (5) with the above analysis as 

( )

( )( )

( )

1
( )

1

( 1, ) ( ) ( 1,
( , )

1,

L i

L
k

TEC L i

k

dT i k i k f k C i k i k
p i j

dT i k i k

=

=

+ − + × × + − +
=

+ − +

∑

∑

)
(10) 

. 
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b. Trust Inference for multi TEC paths 

We can apply equation (10) to compute a single trust evidence chain. However, how to compute 

TEC when multi-paths exist? Assume there are m paths existed between node i and j, let 

 denote trust inference value for the xth' ( , , )
TEC

P x i j  path from node i to j according to  in 

equation 10. So, according to total probability we can get 

( , )TECP i j

'

'1

1

( , , ) 1
( , , )

m
TEC

m
x

TEC
y

P x i j

P y i j=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
∑

. (11) 

'

'

1

( , , )

( , , )

TEC
m

TEC
y

P x i j

P y i j
=
∑

means weight of the xthIn the equation (11),  path. Finally, we can obtain the trust 

inference (node i to node j) method to compute multi-paths TEC as  

( )2'

'1

1

( , , )
( , )

( , , )

m
TEC

m
x

TEC
y

P x i j
p i j

P y i j=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
∑

. (12) 

We could apply equation (12) to infer trust probability while there are multi TECs. 

 

IV. SIMULATIONS AND ANALYSIS 

 

In order to verify the rightness of our proposed scheme, we design a simulation platform by C# 

programming language, and simulate the P2P environment with multi processes and threads. We 

improve the simulation environment based on our former simulation platform [14] and [18]. In 

addition, we design three kinds of nodes for simulation. (1) Class A. It denotes normal and 

‘good’ nodes that provide correct appraisals and good services in P2P system. (2) Class B. It 

denotes independent malicious node in P2P system, providing mendacious service and appraisals. 

Nevertheless, this kind of node does not work coordination with other malicious nodes. (3) Class 

C. It denotes cooperative malicious nodes in P2P system, providing dishonest service and giving 

incorrect appraisals to other nodes except their team members. At the same time, these nodes 

overstate appraisals to the cooperative nodes. Simulation platform provides trust and distrust 

1074 



INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, VOL. 5, NO. 4, DECEMBER 2012 

status for each trust relationship. These three kinds of nodes can generate trust relations, and we 

simulate more than 1,500,000 direct trust relations for 20,000 nodes with equation (1). In 

simulations, we denote our proposed scheme as “Infer-Trust”. 

 

a. Capability to discover TEC 

Firstly, we simulate the capability to discover TEC in our proposed scheme. In this paper, let 

jandibetweenpathsTotoal
jiTECofnumberjiCap ),(),( = (13) 

, 

which means the capability to discover TEC between node i and j. 

In our simulations, we select node pair <i, j> at random and compute the cap(i,j) at the same time. 

According to the current research articles, we use three kinds of methods to infer trusted evidence 

chains from i to j in experiments. The first method finds paths with all trusted nodes. The second 

method treats distrust information as a filter which gives up any node that is evaluated to be 

distrust (direct trust value less than 0.5). The third one is “Infer-Trust” with inference rule 1 and 

rule 2. Figure 8 shows the performance to discover TEC.  
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Figure 8.  Capability of discovering TEC 
In this experiment, three methods are under the same environment with 5000 nodes. From the 

above chart, we could find easily that the “Infer-Trust” has advantages in capability to discover 

TEC under the same environment with the time-steps go on. However, our scheme spends more 

time steps during the processes to finish task while the other two methods could stop within 1000 

time steps. Thus, the time performance needs improving in our future work. 

 

1075 



Zhenhua Tan, Guangming Yang, Wei Cheng, Distributed Trust Inference Model Based on Probability and 
Balance Theory for Peer-to-Peer systems 

b. Trust Inference Performance during intensive trust relations 

Simulations are made to compute the indirect trust value via three methods, that is average 

method in [14], multiplication method in [18] and “Infer-Trust” method in this paper, for the 

same <i, j> pairs.  

We test the rightness of “Infer-Trust” during a simulated dataset with 70% nodes belonging to 

class A, to get an intensive trust relation environment. We find that the tree methods could return 

the relatively same results. Figure 9 shows one of the result with marked node pair <i=12, j=253>.  
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Figure 9.  Performance to infer indirect trust for intensive trust relations 

 
In our former works, we have simulated and proved that the other two methods in [14] and [18] 

are effective to infer trust during intensive trust environment. Now, as we can see from the above 

results, the “Infer-Trust” could normally infer a rational value, just as the other method. Thus, our 

scheme has the same capability to compute indirect trust during intensive trust relations 

environment. 

 

c. Trust Inference Performance during intensive distrust relations 

We simulate the intensive distrust relations environment with 40% class A nodes, 30% class B 

nodes and 30% class C nodes, initialized with 1000 nodes and gradually increasing by running 

cycles. Figure 10 shows the result. 
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Figure 10.  Performance to infer indirect trust for intensive distrust relations 

 
The result proves that our scheme“ Infer-Trust” is more efficient to infer trust during the 

intensive distrust relations environment. In fact, in our works [14] and [18], the other two 

methods prove to be invalid when trust relations are sparse. 

 
d. Performance to resist malicious download 

Assumed TotalCount is the total transaction times and BC_Count is the total transaction times 

with B-nodes or C-nodes, which are malicious nodes. Then, the download-resisting performance 

from malicious nodes is 

TotalCount
CountBCdr _

= (14) 
, 

For example, a node of class A has 100 transactions, and 20 transactions with B-nodes or C-

nodes, then the download-resisting performance is dr=20%.  

We simulate the download-resisting performance for MDHTrust [14], EigenRep [7], random 

model and our scheme“Infer-Trust”, with 60% nodes of class A, 20% nodes of class B and 20% 

nodes of class C. We do statistics of the download-resisting performance for these trust models. 

Figure 11 shows the results.  
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Figure 11.  Performance of download-resisting 

 
As we can see, the random model had the worst performance while our scheme had a relatively 

modest efficiency during resisting malicious download. That proves our scheme is effective. 

 

V. CONCLUSIONS AND FUTURE WORKS 

 

A main security issue in P2P networks is how to discover effective trusted relations between 

nodes. In our opinion, relations in a completely distributed P2P network are projections of users' 

behaviors. Therefore, some theory about social network could be adapted to P2P network. In this 

paper, we present a novel distributed trust model based on balance theory. After modeling a 

simple direct trust model, we construct trust relations network, trust inference network and trust 

inference deep level based on direct trust network. Moreover, we design two inference rules to 

discover trusted evidence chains in trust relations network in order to generate inference graph. 

At last, this paper proposes mathematics inference models to compute trusted evidence chains by 

Markov probability theory. We simulate the proposed scheme in distributed environment, and 

results prove the rightness and effectiveness both in intensive trust relations environment and 

intensive distrust environment. 

However, it will be a long time to study the trust model for a distributed system. There are many 

problems need improvement, such as how to improve the time performance and how to apply it 

into existed models. 
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