659 research outputs found

    A DNA barcode library for mangrove gastropods and crabs of Hong Kong and the Greater Bay Area reveals an unexpected faunal diversity associated with the intertidal forests of Southern China

    Get PDF
    BACKGROUND: Mangroves are tropical and subtropical intertidal forests colonising sheltered coasts across the world. They host a unique faunal community, dominated by brachyuran crabs and gastropods. These invertebrates strongly contribute to the functionality of the entire forest. The reliable assessment of mangrove faunal diversity is, thus, a crucial step for efficient management and conservation plans, but it is hindered by difficulties in species identification. Here we provide a verified DNA barcode library for brachyuran crabs and gastropods inhabiting the mangroves of the Greater Bay Area, Southern China. In particular, we collected and morphologically identified 1100 specimens of mangrove associated brachyuran crabs and gastropods. The partial sequences of the mtDNA cytochrome oxidase subunit I gene were obtained from 275 specimens. Barcode sequences were then used to delineate Molecular Operational Taxonomic Units (MOTUs), employing three different delimitation methods: the automatic barcode gap discovery (ABGD) method, the general mixed Yule coalescent (GMYC) model and a Bayesian implementation of the Poisson tree processes (bPTP) model. RESULTS: By integrating DNA barcodes with morphology, we identified 44 gastropod species and 58 brachyuran species associated with Hong Kong mangroves, with five and seven new records, for gastropods and crabs, respectively, for the Greater Bay Area. The delineation of MOTUs based on barcode sequences revealed a strong congruence between morphological and molecular identification for both taxa, showing the high reliability of the barcode library. CONCLUSIONS: This study provides the first reference barcode library for mangrove-associated macrobenthic fauna in the Greater Bay Area and represents a reliable tool to management and conservation plans. Our molecular analyses resolved long lasting taxonomic misidentifications and inconsistencies and updated the knowledge on the geographical distribution of Asian mangrove associated fauna, ultimately highlighting a level of biodiversity higher than previously thought for Southern China. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12862-021-01914-6

    U-Th dating of lake sediments: Lessons from the 700 ka sediment record of Lake Junín, Peru

    Get PDF
    Deep sediment cores from long-lived lake basins are fundamental records of paleoenvironmental history, but the power of these reconstructions has been often limited by poor age control. Uranium-thorium (U-Th) dating has the potential to fill a gap in current geochronological tools available for such sediment archives. We present our systematic approach to U-Th date carbonate-rich sediments from the ∼100 m drill core from Lake Junín, Peru. The results form the foundation of an age-depth model spanning ∼700 kyrs. High uranium concentrations (0.3–4 ppm) of these sediments allow us to date smaller amounts of material, giving us the opportunity to improve sample selection by avoiding detrital contamination, the greatest factor limiting the success of previous U-Th dating efforts in other lake basins. Despite this advantage, the dates from 174 analyses on 55 bulk carbonate samples reveal significant scatter that cannot be resolved with traditional isochrons, suggesting that at least some of the sediments have not remained closed systems. To understand the source of noise in the geochronological data, we first apply threshold criteria that screen samples by their U/Th ratio, reproducibility, and δ²³⁴U_(initial) value. We then compare these results with facies types, trace element concentrations, carbonate and total organic carbon content, color reflectance, mineralogy, and ostracode shell color to investigate the causes of open system behavior. Alongside simulations of the isotopic evolution of our samples, we find that the greatest impediment to U-Th dating of these sediments is not detrital contamination, but rather post-depositional remobilization of uranium. Examining U-Th data in these contexts, we identify samples that have likely experienced the least amount of alteration, and use dates from those samples as constraints for the age-depth model. Our work has several lessons for future attempts to U-Th date lake sediments, namely that geologic context is equally as important as the accuracy and precision of analytical measurements. In addition, we caution that significant geologic scatter may remain undetected if not for labor intensive tests of reproducibility achieved through replication. As a result of this work, the deep sediment core from Lake Junín is the only continuous record in the tropical Andes spanning multiple glacial cycles that is constrained entirely by independent radiometric dates

    Impact on arsenic exposure of a growing proportion of untested wells in Bangladesh

    Get PDF
    In many areas of Bangladesh, it has been more than six years since a national campaign to test tubewells for arsenic (As) was conducted. Many households therefore draw their water for drinking and cooking from untested wells. A household drinking water survey of 6646 households was conducted in Singair upazilla of Bangladesh. A subset of 795 untested wells used by 1000 randomly selected households was tested in the field by trained village workers with the Hach EZ kit, using an extended reaction time of 40 min, and in the laboratory by high-resolution inductively-coupled plasma-mass spectrometry (HR ICP-MS). The household survey shows that more than 80% of the wells installed since the national testing campaign in this area were untested. Less than 13% of the households with untested wells knew where a low-As well was located near their home. Village workers using the Hach EZ kit underestimated the As content of only 4 out of 795 wells relative to the Bangladesh standard. However, the As content of 168 wells was overestimated relative to the same threshold. There is a growing need for testing tubewells in areas of Bangladesh where As concentrations in groundwater are elevated. This could be achieved by village workers trained to use a reliable field kit. Such an effort would result in a considerable drop in As exposure as it increases the opportunities for well switching by households

    Genetic determinants of co-accessible chromatin regions in activated T cells across humans.

    Get PDF
    Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression

    DNA topoisomerases participate in fragility of the oncogene RET

    Get PDF
    Fragile site breakage was previously shown to result in rearrangement of the RET oncogene, resembling the rearrangements found in thyroid cancer. Common fragile sites are specific regions of the genome with a high susceptibility to DNA breakage under conditions that partially inhibit DNA replication, and often coincide with genes deleted, amplified, or rearranged in cancer. While a substantial amount of work has been performed investigating DNA repair and cell cycle checkpoint proteins vital for maintaining stability at fragile sites, little is known about the initial events leading to DNA breakage at these sites. The purpose of this study was to investigate these initial events through the detection of aphidicolin (APH)-induced DNA breakage within the RET oncogene, in which 144 APHinduced DNA breakpoints were mapped on the nucleotide level in human thyroid cells within intron 11 of RET, the breakpoint cluster region found in patients. These breakpoints were located at or near DNA topoisomerase I and/or II predicted cleavage sites, as well as at DNA secondary structural features recognized and preferentially cleaved by DNA topoisomerases I and II. Co-treatment of thyroid cells with APH and the topoisomerase catalytic inhibitors, betulinic acid and merbarone, significantly decreased APH-induced fragile site breakage within RET intron 11 and within the common fragile site FRA3B. These data demonstrate that DNA topoisomerases I and II are involved in initiating APH-induced common fragile site breakage at RET, and may engage the recognition of DNA secondary structures formed during perturbed DNA replication

    Genomic Responses to Abnormal Gene Dosage: The X Chromosome Improved on a Common Strategy

    Get PDF
    This new primer, which discusses a study by Zhang et al., provides an overview of the process by which chromosomes achieve dose compensation and the mechanisms underlying this phenomenon in Drosophila S2 cells

    Placement and orientation of individual DNA shapes on lithographically patterned surfaces

    Get PDF
    Artificial DNA nanostructures show promise for the organization of functional materials to create nanoelectronic or nano-optical devices. DNA origami, in which a long single strand of DNA is folded into a shape using shorter 'staple strands', can display 6-nm-resolution patterns of binding sites, in principle allowing complex arrangements of carbon nanotubes, silicon nanowires, or quantum dots. However, DNA origami are synthesized in solution and uncontrolled deposition results in random arrangements; this makes it difficult to measure the properties of attached nanodevices or to integrate them with conventionally fabricated microcircuitry. Here we describe the use of electron-beam lithography and dry oxidative etching to create DNA origami-shaped binding sites on technologically useful materials, such as SiO_2 and diamond-like carbon. In buffer with ~ 100 mM MgCl_2, DNA origami bind with high selectivity and good orientation: 70–95% of sites have individual origami aligned with an angular dispersion (±1 s.d.) as low as ±10° (on diamond-like carbon) or ±20° (on SiO_2)
    corecore