8 research outputs found

    Targeted genotyping identifies susceptibility locus in brain-derived neurotrophic factor gene for chronic postsurgical pain.

    No full text
    BACKGROUND: The purpose of this study was to evaluate the association between single-nucleotide polymorphisms and chronic postsurgical pain. METHODS: Using GoldenGate genotyping assays, we genotyped 638 polymorphisms within 54 pain-related genes in 1,152 surgical patients who were enrolled in our Persistent Pain after Surgery Study. Patients were contacted by phone to determine whether they had chronic postsurgical pain at 12 months. Polymorphisms identified were validated in a matched cohort of 103 patients with chronic postsurgical pain and 103 patients who were pain free. The functions of targeted polymorphisms were tested in an experimental plantar incisional nociception model using knock-in mice. RESULTS: At 12 months after surgery, 246 (21.4%) patients reported chronic postsurgical pain. Forty-two polymorphisms were found to be associated with chronic postsurgical pain, 19 decreased the risk of pain, and 23 increased the risk of pain. Patients carrying allele A of rs6265 polymorphism in brain-derived neurotrophic factor (BDNF) had a lower risk of chronic postsurgical pain in the discovery and validation cohorts, with an adjusted odds ratio (95% CI) of 0.62 (0.43 to 0.90) and 0.57 (0.39 to 0.85), respectively. Age less than 65 yr, male sex, and prior history of pain syndrome were associated with an increased risk of pain. Genetic polymorphisms had higher population attributable risk (7.36 to 11.7%) compared with clinical risk factors (2.90 to 5.93%). Importantly, rs6265 is a substitution of valine by methionine at amino acid residue 66 (Val66Met) and was associated with less mechanical allodynia in BDNF mice compared with BDNF group after plantar incision. CONCLUSIONS: This study demonstrated that genetic variation of BDNF is associated with an increased risk of chronic postsurgical pain

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field. © 2012 Landes Bioscience

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    [[sponsorship]]生物化學研究所[[note]]已出版;[SCI];有審查制度;具代表性[[note]]http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Drexel&SrcApp=hagerty_opac&KeyRecord=1554-8627&DestApp=JCR&RQ=IF_CAT_BOXPLO

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore