128 research outputs found
DW-MRI as a Biomarker to Compare Therapeutic Outcomes in Radiotherapy Regimens Incorporating Temozolomide or Gemcitabine in Glioblastoma
The effectiveness of the radiosensitizer gemcitabine (GEM) was evaluated in a mouse glioma along with the imaging biomarker diffusion-weighted magnetic resonance imaging (DW-MRI) for early detection of treatment effects. A genetically engineered murine GBM model [Ink4a-Arf−/− PtenloxP/loxP/Ntv-a RCAS/PDGF(+)/Cre(+)] was treated with gemcitabine (GEM), temozolomide (TMZ) +/− ionizing radiation (IR). Therapeutic efficacy was quantified by contrast-enhanced MRI and DW-MRI for growth rate and tumor cellularity, respectively. Mice treated with GEM, TMZ and radiation showed a significant reduction in growth rates as early as three days post-treatment initiation. Both combination treatments (GEM/IR and TMZ/IR) resulted in improved survival over single therapies. Tumor diffusion values increased prior to detectable changes in tumor volume growth rates following administration of therapies. Concomitant GEM/IR and TMZ/IR was active and well tolerated in this GBM model and similarly prolonged median survival of tumor bearing mice. DW-MRI provided early changes to radiosensitization treatment warranting evaluation of this imaging biomarker in clinical trials
Sensitivity of MRI Tumor Biomarkers to VEGFR Inhibitor Therapy in an Orthotopic Mouse Glioma Model
MRI biomarkers of tumor edema, vascular permeability, blood volume, and average vessel caliber are increasingly being employed to assess the efficacy of tumor therapies. However, the dependence of these biomarkers on a number of physiological factors can compromise their sensitivity and complicate the assessment of therapeutic efficacy. Here we examine the response of these MRI tumor biomarkers to cediranib, a potent vascular endothelial growth factor receptor (VEGFR) inhibitor, in an orthotopic mouse glioma model. A significant increase in the tumor volume and relative vessel caliber index (rVCI) and a slight decrease in the water apparent diffusion coefficient (ADC) were observed for both control and cediranib treated animals. This contrasts with a clinical study that observed a significant decrease in tumor rVCI, ADC and volume with cediranib therapy. While the lack of a difference between control and cediranib treated animals in these biomarker responses might suggest that cediranib has no therapeutic benefit, cediranib treated mice had a significantly increased survival. The increased survival benefit of cediranib treated animals is consistent with the significant decrease observed for cediranib treated animals in the relative cerebral blood volume (rCBV), relative microvascular blood volume (rMBV), transverse relaxation time (T2), blood vessel permeability (Ktrans), and extravascular-extracellular space (νe). The differential response of pre-clinical and clinical tumors to cediranib therapy, along with the lack of a positive response for some biomarkers, indicates the importance of evaluating the whole spectrum of different tumor biomarkers to properly assess the therapeutic response and identify and interpret the therapy-induced changes in the tumor physiology
In-Vivo Visualization of Tumor Microvessel Density and Response to Anti-Angiogenic Treatment by High Resolution MRI in Mice
Purpose: Inhibition of angiogenesis has shown clinical success in patients with cancer. Thus, imaging approaches that allow for the identification of angiogenic tumors and the detection of response to anti-angiogenic treatment are of high clinical relevance. Experimental Design: We established an in vivo magnetic resonance imaging (MRI) approach that allows us to simultaneously image tumor microvessel density and tumor vessel size in a NSCLC model in mice. Results: Using microvessel density imaging we demonstrated an increase in microvessel density within 8 days after tumor implantation, while tumor vessel size decreased indicating a switch from macro- to microvessels during tumor growth. Moreover, we could monitor in vivo inhibition of angiogenesis induced by the angiogenesis inhibitor PTK787, resulting in a decrease of microvessel density and a slight increase in tumor vessel size. Conclusions: We present an in vivo imaging approach that allows us to monitor both tumor microvessel density and tumor vessel size in the tumor. Moreover, this approach enables us to assess, early-on, treatment effects on tumor microvessel density as well as on tumor vessel size. Thus, this imaging-based strategy of validating anti-angiogenic treatment effects ha
Relationship Between [18F]FDOPA PET Uptake, Apparent Diffusion Coefficient (ADC), and Proliferation Rate in Recurrent Malignant Gliomas
Purpose: Diffusion magnetic resonance imaging (MRI) and 6-[18F]fluoro-l-dopa ([18F]FDOPA) positron emission tomography (PET) are used to interrogate malignant tumor microenvironment. It remains unclear whether there is a relationship between [18F]FDOPA uptake, diffusion MRI estimates of apparent diffusion coefficient (ADC), and mitotic activity in the context of recurrent malignant gliomas, where the tumor may be confounded by the effects of therapy. The purpose of the current study is to determine whether there is a correlation between these imaging techniques and mitotic activity in malignant gliomas.Procedures: We retrospectively examined 29 patients with recurrent malignant gliomas who underwent structural MRI, diffusion MRI, and [18F]FDOPA PET prior to surgical resection. Qualitative associations were noted, and quantitative voxel-wise and median measurement correlations between [18F]FDOPA PET, ADC, and mitotic index were performed.Results: Areas of high [18F]FDOPA uptake exhibited low ADC and areas of hyperintensity T2/fluid-attenuated inversion recovery (FLAIR) with low [18F]FDOPA uptake exhibited high ADC. There was a significant inverse voxel-wise correlation between [18F]FDOPA and ADC for all patients. Median [18F]FDOPA uptake and median ADC also showed a significant inverse correlation. Median [18F]FDOPA uptake was positively correlated, and median ADC was inversely correlated with mitotic index from resected tumor tissue.Conclusions: A significant association may exist between [18F]FDOPA uptake, diffusion MRI, and mitotic activity in recurrent malignant gliomas
The distribution of the apparent diffusion coefficient as an indicator of the response to chemotherapeutics in ovarian tumour xenografts
Cancer Council of Queensland and a mobility grant (Personalized Medicine) from the German Academic Exchange Service (DAAD)
Concerns about anti-angiogenic treatment in patients with glioblastoma multiforme
BACKGROUND: The relevance of angiogenesis inhibition in the treatment of glioblastoma multiforme (GBM) should be considered in the unique context of malignant brain tumours. Although patients benefit greatly from reduced cerebral oedema and intracranial pressure, this important clinical improvement on its own may not be considered as an anti-tumour effect. DISCUSSION: GBM can be roughly separated into an angiogenic component, and an invasive or migratory component. Although this latter component seems inert to anti-angiogenic therapy, it is of major importance for disease progression and survival. We reviewed all relevant literature. Published data support that clinical symptoms are tempered by anti-angiogenic treatment, but that tumour invasion continues. Unfortunately, current imaging modalities are affected by anti-angiogenic treatment too, making it even harder to define tumour margins. To illustrate this we present MRI, biopsy and autopsy specimens from bevacizumab-treated patients. Moreover, while treatment of other tumour types may be improved by combining chemotherapy with anti-angiogenic drugs, inhibiting angiogenesis in GBM may antagonise the efficacy of chemotherapeutic drugs by normalising the blood-brain barrier function. SUMMARY: Although angiogenesis inhibition is of considerable value for symptom reduction in GBM patients, lack of proof of a true anti-tumour effect raises concerns about the place of this type of therapy in the treatment of GBM
Glioma imaging in Europe: A survey of 220 centres and recommendations for best clinical practice
Objectives: At a European Society of Neuroradiology (ESNR) Annual Meeting 2015 workshop, commonalities in practice, current controversies and technical hurdles in glioma MRI were discussed. We aimed to formulate guidance on MRI of glioma and determine its feasibility, by seeking information on glioma imaging practices from the European Neuroradiology community. Methods: Invitations to a structured survey were emailed to ESNR members (n=1,662) and associates (n=6,400), European national radiologists’ societies and distributed via social media. Results: Responses were received from 220 institutions (59% academic). Conventional imaging protocols generally include T2w, T2-FLAIR, DWI, and pre- and post-contrast T1w. Perfusion MRI is used widely (85.5%), while spectroscopy seems reserved for specific indications. Reasons for omitting advanced imaging modalities include lack of facility/software, time constraints and no requests. Early postoperative MRI is routinely carried out by 74% within 24–72 h, but only 17% report a percent measure of resection. For follow-up, most sites (60%) issue qualitative reports, while 27% report an assessment according to the RANO criteria. A minori
- …