175 research outputs found

    Practical scheme for a light-induced gauge field in an atomic Bose gas

    Full text link
    We propose a scheme to generate an Abelian gauge field in an atomic gas using two crossed laser beams. If the internal atomic state follows adiabatically the eigenstates of the atom-laser interaction, Berry's phase gives rise to a vector potential that can nucleate vortices in a Bose gas. The present scheme operates even for a large detuning with respect to the atomic resonance, making it applicable to alkali-metal atoms without significant heating due to spontaneous emission. We test the validity of the adiabatic approximation by integrating the set of coupled Gross-Pitaevskii equations associated with the various internal atomic states, and we show that the steady state of the interacting gas indeed exhibits a vortex lattice, as expected from the adiabatic gauge field.Comment: 4 pages, 3 figure

    Flux lattices reformulated

    Full text link
    We theoretically explore the optical flux lattices produced for ultra-cold atoms subject to laser fields where both the atom-light coupling and the effective detuning are spatially periodic. We analyze the geometric vector potential and the magnetic flux it generates, as well as the accompanying geometric scalar potential. We show how to understand the gauge-dependent Aharonov-Bohm singularities in the vector potential, and calculate the continuous magnetic flux through the elementary cell in terms of these singularities. The analysis is illustrated with a square optical flux lattice. We conclude with an explicit laser configuration yielding such a lattice using a set of five properly chosen beams with two counterpropagating pairs (one along the x axes and the other y axes), together with a single beam along the z axis. We show that this lattice is not phase-stable, and identify the one phase-difference that affects the magnetic flux. Thus armed with realistic laser setup, we directly compute the Chern number of the lowest Bloch band to identify the region where the non- zero magnetic flux produces a topologically non-trivial band structure.Comment: 22 pages, 7 figure

    A synthetic electric force acting on neutral atoms

    Full text link
    Electromagnetism is a simple example of a gauge theory where the underlying potentials -- the vector and scalar potentials -- are defined only up to a gauge choice. The vector potential generates magnetic fields through its spatial variation and electric fields through its time-dependence. We experimentally produce a synthetic gauge field that emerges only at low energy in a rubidium Bose-Einstein condensate: the neutral atoms behave as charged particles do in the presence of a homogeneous effective vector potential. We have generated a synthetic electric field through the time dependence of an effective vector potential, a physical consequence even though the vector potential is spatially uniform

    Light-cone-like spreading of correlations in a quantum many-body system

    Get PDF
    How fast can correlations spread in a quantum many-body system? Based on the seminal work by Lieb and Robinson, it has recently been shown that several interacting many-body systems exhibit an effective light cone that bounds the propagation speed of correlations. The existence of such a "speed of light" has profound implications for condensed matter physics and quantum information, but has never been observed experimentally. Here we report on the time-resolved detection of propagating correlations in an interacting quantum many-body system. By quenching a one-dimensional quantum gas in an optical lattice, we reveal how quasiparticle pairs transport correlations with a finite velocity across the system, resulting in an effective light cone for the quantum dynamics. Our results open important perspectives for understanding relaxation of closed quantum systems far from equilibrium as well as for engineering efficient quantum channels necessary for fast quantum computations.Comment: 7 pages, 5 figures, 2 table

    Single-atom imaging of fermions in a quantum-gas microscope

    Get PDF
    Single-atom-resolved detection in optical lattices using quantum-gas microscopes has enabled a new generation of experiments in the field of quantum simulation. Fluorescence imaging of individual atoms has so far been achieved for bosonic species with optical molasses cooling, whereas detection of fermionic alkaline atoms in optical lattices by this method has proven more challenging. Here we demonstrate single-site- and single-atom-resolved fluorescence imaging of fermionic potassium-40 atoms in a quantum-gas microscope setup using electromagnetically-induced-transparency cooling. We detected on average 1000 fluorescence photons from a single atom within 1.5s, while keeping it close to the vibrational ground state of the optical lattice. Our results will enable the study of strongly correlated fermionic quantum systems in optical lattices with resolution at the single-atom level, and give access to observables such as the local entropy distribution and individual defects in fermionic Mott insulators or anti-ferromagnetically ordered phases.Comment: 7 pages, 5 figures; Nature Physics, published online 13 July 201

    Observation of mesoscopic crystalline structures in a two-dimensional Rydberg gas

    Get PDF
    The ability to control and tune interactions in ultracold atomic gases has paved the way towards the realization of new phases of matter. Whereas experiments have so far achieved a high degree of control over short-ranged interactions, the realization of long-range interactions would open up a whole new realm of many-body physics and has become a central focus of research. Rydberg atoms are very well-suited to achieve this goal, as the van der Waals forces between them are many orders of magnitude larger than for ground state atoms. Consequently, the mere laser excitation of ultracold gases can cause strongly correlated many-body states to emerge directly when atoms are transferred to Rydberg states. A key example are quantum crystals, composed of coherent superpositions of different spatially ordered configurations of collective excitations. Here we report on the direct measurement of strong correlations in a laser excited two-dimensional atomic Mott insulator using high-resolution, in-situ Rydberg atom imaging. The observations reveal the emergence of spatially ordered excitation patterns in the high-density components of the prepared many-body state. They have random orientation, but well defined geometry, forming mesoscopic crystals of collective excitations delocalised throughout the gas. Our experiment demonstrates the potential of Rydberg gases to realise exotic phases of matter, thereby laying the basis for quantum simulations of long-range interacting quantum magnets.Comment: 10 pages, 7 figure

    Microscopic observation of magnon bound states and their dynamics

    Get PDF
    More than eighty years ago, H. Bethe pointed out the existence of bound states of elementary spin waves in one-dimensional quantum magnets. To date, identifying signatures of such magnon bound states has remained a subject of intense theoretical research while their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting to reveal such bound states by tracking the spin dynamics after a local quantum quench with single-spin and single-site resolution. Here we report on the direct observation of two-magnon bound states using in-situ correlation measurements in a one-dimensional Heisenberg spin chain realized with ultracold bosonic atoms in an optical lattice. We observe the quantum walk of free and bound magnon states through time-resolved measurements of the two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single magnon excitations. In our measurements, we also determine the decay time of bound magnons, which is most likely limited by scattering on thermal fluctuations in the system. Our results open a new pathway for studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.Comment: 8 pages, 7 figure

    Single-Atom Resolved Fluorescence Imaging of an Atomic Mott Insulator

    Get PDF
    The reliable detection of single quantum particles has revolutionized the field of quantum optics and quantum information processing. For several years, researchers have aspired to extend such detection possibilities to larger scale strongly correlated quantum systems, in order to record in-situ images of a quantum fluid in which each underlying quantum particle is detected. Here we report on fluorescence imaging of strongly interacting bosonic Mott insulators in an optical lattice with single-atom and single-site resolution. From our images, we fully reconstruct the atom distribution on the lattice and identify individual excitations with high fidelity. A comparison of the radial density and variance distributions with theory provides a precise in-situ temperature and entropy measurement from single images. We observe Mott-insulating plateaus with near zero entropy and clearly resolve the high entropy rings separating them although their width is of the order of only a single lattice site. Furthermore, we show how a Mott insulator melts for increasing temperatures due to a proliferation of local defects. Our experiments open a new avenue for the manipulation and analysis of strongly interacting quantum gases on a lattice, as well as for quantum information processing with ultracold atoms. Using the high spatial resolution, it is now possible to directly address individual lattice sites. One could, e.g., introduce local perturbations or access regions of high entropy, a crucial requirement for the implementation of novel cooling schemes for atoms on a lattice

    Sudden switch of generalized Lieb-Robinson velocity in a transverse field Ising spin chain

    Full text link
    The Lieb-Robinson theorem states that the speed at which the correlations between two distant nodes in a spin network can be built through local interactions has an upper bound, which is called the Lieb-Robinson velocity. Our central aim is to demonstrate how to observe the Lieb-Robinson velocity in an Ising spin chain with a strong transverse field. We adopt and compare four correlation measures for characterizing different types of correlations, which include correlation function, mutual information, quantum discord, and entanglement of formation. We prove that one of correlation functions shows a special behavior depending on the parity of the spin number. All the information-theoretical correlation measures demonstrate the existence of the Lieb-Robinson velocity. In particular, we find that there is a sudden switch of the Lieb-Robinson speed with the increasing of the number of spin
    • …
    corecore