7 research outputs found

    Improving the quality of products created by additive technologies on the basis of tig welding

    Get PDF
    Π’ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– Ρ€ΠΎΠ·Π³Π»ΡΠ΄Π°ΡŽΡ‚ΡŒΡΡ питання отримання ΠΌΡ–Π½Ρ–ΠΌΠ°Π»ΡŒΠ½ΠΎΡ— хвилястості ΠΏΠΎΠ²Π΅Ρ€Ρ…ΠΎΠ½ΡŒ, Ρ‰ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΡŽΡ‚ΡŒΡΡ Π°Π΄Π΄ΠΈΡ‚ΠΈΠ²Π½ΠΈΠΌ процСсом Π°Ρ€Π³ΠΎΠ½Π½ΠΎ-Π΄ΡƒΠ³ΠΎΠ²ΠΎΠ³ΠΎ Π·Π²Π°Ρ€ΡŽΠ²Π°Π½Π½Ρ. Π’Ρ–Π΄ΠΎΠΌΠΎ, Ρ‰ΠΎ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½Ρ– ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈ Π²Π°Π»ΠΈΠΊΠ° Ρ€ΠΎΠ·ΠΏΠ»Π°Π²Ρƒ, Ρ‰ΠΎ ΠΏΠΎΡˆΠ°Ρ€ΠΎΠ²ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΡ” Π²Ρ–Π΄Ρ‚Π²ΠΎ-Ρ€ΡŽΠ²Π°Π½Ρƒ Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΡƒ, Π²ΠΈΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ΡŒΡΡ як Π΅Π½Π΅Ρ€Π³Π΅Ρ‚ΠΈΡ‡Π½ΠΈΠΌΠΈ, Ρ‚Π°ΠΊ Ρ– ΠΊΡ–Π½Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΈΠΌΠΈ характСристиками процСсу. ΠŸΡ€ΠΈ Ρ†ΡŒΠΎΠΌΡƒ викладання Π²Π°Π»ΠΈΠΊΡ–Π² Π²Ρ–Π΄Π±ΡƒΠ²Π°Ρ”Ρ‚ΡŒΡΡ Π· ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΠΌ пСрСкриттям, завдяки Ρ‡ΠΎΠΌΡƒ Π²Π΄Π°Ρ”Ρ‚ΡŒΡΡ досягти ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΡ— Ρ‰Ρ–Π»ΡŒΠ½ΠΎΡΡ‚Ρ– ΠΌΠΎΠ΄Π΅Π»Ρ–, ΠΎΠ΄Π½Π°ΠΊ Π· одночасним виникнСнням ΠΏΠ΅Π²Π½ΠΎΡ— хвилястості, ΠΎΠ±ΡƒΠΌΠΎΠ²Π»Π΅Π½ΠΎΡ— Ρ‚Π΅Ρ€ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΈΠΌΠΈ явищами Ρƒ Π²Π°Π½Π½Ρ– Ρ€ΠΎΠ·ΠΏΠ»Π°Π²Ρƒ. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½Π° модСль формування Π²Π°Π»ΠΈΠΊΡƒ Π½Π°ΠΏΠ»Π°Π²Ρƒ, завдяки якій встановлСно Ρ€Π°Ρ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½Ρ– ΡƒΠΌΠΎΠ²ΠΈ викладання ΡˆΠ°Ρ€Ρ–Π². НавСдСно Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ– дослідТСння процСсу Π°Ρ€Π³ΠΎΠ½Π½ΠΎ-Π΄ΡƒΠ³ΠΎΠ²ΠΎΠ³ΠΎ відтворСння ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π·Π°Π΄Π°Π½ΠΎΡ— Ρ„ΠΎΡ€ΠΌΠΈ, ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎ рСгрСсійні рівняння для визначСння ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρƒ хвилястості. Показано, Ρ‰ΠΎ Π½Π° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ хвилястості Π²ΠΈΠΏΠ»ΠΈΠ²Π°ΡŽΡ‚ΡŒ Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½Ρ– явища Ρ‚Π° Ρ…Π²ΠΈΠ»ΡŒΠΎΠ²Ρ– процСси, які Ρ€ΠΎΠ·Π²ΠΈΠ²Π°ΡŽΡ‚ΡŒΡΡ ΠΏΡ–Π΄ Π΄Ρ–Ρ”ΡŽ систСми сил ΠΏΡ–Π΄ час формування Π²Π°Π»ΠΈΠΊΡƒ Π½Π°ΠΏΠ»Π°Π²Ρƒ. ΠŸΠΎΠΊΡ€Π°Ρ‰Π΅Π½Π½Ρ якості Π²ΠΈΡ€ΠΎΠ±Ρ–Π² Π²Π±Π°Ρ‡Π°Ρ”Ρ‚ΡŒΡΡ Π² ΠΎΠΏΡ‚ΠΈΠΌΡ–Π·Π°Ρ†Ρ–Ρ— способів формування Π²Π°Π»ΠΈΠΊΡ–Π², забСзпСчСнням Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΎΡ— сталості Ρ€ΡƒΡ…Ρƒ Ρ€ΠΎΠ±ΠΎΡ‡ΠΎΡ— Π³ΠΎΠ»ΠΎΠ²ΠΊΠΈ, забСзпСчСнням Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎΠ³ΠΎ пСрСкриття Ρ‚Ρ€Π°Ρ”ΠΊΡ‚ΠΎΡ€Ρ–ΠΉ Ρ€ΡƒΡ…Ρƒ ΠΏΠΎ ΡˆΠ°Ρ€Π°ΠΌ викладання Π½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ 0,5 Π΅, забСзпСчСнням Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΎΡ— сталості Ρ€ΡƒΡ…Ρƒ Ρ€ΠΎΠ±ΠΎΡ‡ΠΎΡ— Π³ΠΎΠ»ΠΎΠ²ΠΊΠΈ, встановлСнням Ρ€Π°Ρ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡ— Π΄ΠΎΠ²ΠΆΠΈΠ½ΠΈ Π΄ΡƒΠ³ΠΈ, Π° Ρ‚Π°ΠΊΠΎΠΆ підтриманням Ρ€Π΅ΠΆΠΈΠΌΡƒ Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΎΡ— сталості горіння Π΄ΡƒΠ³ΠΈ ΠŸΠΎΠ±ΡƒΠ΄ΠΎΠ²Π°Π½ΠΎ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Π²Ρ–Π΄Π³ΡƒΠΊΡ–Π² Ρ†Ρ–Π»ΡŒΠΎΠ²ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΉ Π² ΠΏΠ»ΠΎΡ‰ΠΈΠ½Π°Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² Π²ΠΏΠ»ΠΈΠ²Ρƒ, які Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ΡŒΡΡ наглядно ΠΏΡ€ΠΎΡ–Π»ΡŽΡΡ‚Ρ€ΡƒΠ²Π°Ρ‚ΠΈ Π·Π°Π»Π΅ΠΆΠ½Ρ–ΡΡ‚ΡŒ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠΎΠ²Π°Π½ΠΈΡ… Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² шва Π²Ρ–Π΄ ΠΎΠΊΡ€Π΅ΠΌΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² Π²ΠΏΠ»ΠΈΠ²Ρƒ.The paper deals with the issues of obtaining the minimum waviness of surfaces formed by additive processes of TIG welding. It is known that the geometric parameters of the melt bead, which form a reproducible workpiece layer by layer, are determined by both the energy and kinematic characteristics of the process. In this case, the laying of the rollers occurs with optimal overlap, as a result of which it is possible to achieve the maximum density of the model, however, with the simultaneous appearance of a certain waviness due to thermodynamic phenomena in the melt bath. The proposed model of the formation of a bead of melt, the use of which made it possible to establish the rational conditions for laying out the layers. Experimental studies of the process of argon-arc surfacing of models of a given, regression equations for determining the controlled waviness parameter are obtained. It is shown that the waviness parameter is influenced by dynamic phenomena and wave processes that develop under the action of a system of forces during the formation of a melt bead. An improvement in the quality of products is seen in the optimization of the methods of forming the rollers, in ensuring the dynamic stability of the movement of the working head, ensuring the appropriate overlap of the trajectories of movement along the layers of the layout by an amount of 0.5e, establishing a rational arc length, and maintaining the dynamic stability of the arc burning. The response surfaces of the objective functions in the planes of the process parameters are constructed, which provide a clear illus-tration of the dependence of the controlled geometric parameters on the welding modes.Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ вопросы получСния минимальной волнистости повСрхностСй, Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Π°Π΄Π΄ΠΈΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ процСссами Π°Ρ€Π³ΠΎΠ½Π½ΠΎ-Π΄ΡƒΠ³ΠΎΠ²ΠΎΠΉ сварки. Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ гСомСтричСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π²Π°Π»ΠΈΠΊΠ° расплава, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌΠΈ послойно формируСтся воспроизводимая Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ°, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ ΠΊΠ°ΠΊ энСргСтичСскими, Ρ‚Π°ΠΊ ΠΈ кинСматичСскими характСристиками процСсса. ΠŸΡ€ΠΈ этом Π²Ρ‹ΠΊΠ»Π°Π΄ΠΊΠ° Π²Π°Π»ΠΈΠΊΠΎΠ² происходит с ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠ΅Ρ€Π΅ΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ΠΌ, Π² слСдствиС Ρ‡Π΅Π³ΠΎ удаСтся Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ максимальной плотности ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΠΎΠ΄Π½Π°ΠΊΠΎ с ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ волнистости, обусловлСнной тСрмодинамичСскими явлСниями Π² Π²Π°Π½Π½Π΅ расплава. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Π°Ρ модСль формирования Π²Π°Π»ΠΈΠΊΠ° расплава, использованиС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ условия Π²Ρ‹ΠΊΠ»Π°Π΄ΠΊΠΈ слоСв. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ исслСдования процСсса Π°Ρ€Π³ΠΎΠ½Π½ΠΎ-Π΄ΡƒΠ³ΠΎΠ²ΠΎΠΉ Π½Π°ΠΏΠ»Π°Π²ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ рСгрСссионныС уравнСния для опрСдСлСния ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° волнистости. Показано, Ρ‡Ρ‚ΠΎ Π½Π° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ волнистости Π²Π»ΠΈΡΡŽΡ‚ динамичСскиС явлСния ΠΈ Π²ΠΎΠ»Π½ΠΎΠ²Ρ‹Π΅ процСссы, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ€Π°Π·Π²ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΏΠΎΠ΄ дСйствиСм систСмы сил ΠΏΡ€ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π²Π°Π»ΠΈΠΊΠ° расплава. Π£Π»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠ΅ качСства ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ видится Π² ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ способов формирования Π²Π°Π»ΠΈΠΊΠΎΠ², Π² обСспСчСнии динамичСской устойчивости двиТСния Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ Π³ΠΎΠ»ΠΎΠ²ΠΊΠΈ, обСспСчСниСм ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ пСрСкрытия Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΉ двиТСния ΠΏΠΎ слоям Π²Ρ‹ΠΊΠ»Π°Π΄ΠΊΠΈ Π½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ 0,5Π΅, установлСниСм Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹ Π΄ΡƒΠ³ΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ° динамичСской устойчивости горСния Π΄ΡƒΠ³ΠΈ. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΎ повСрхности ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° Ρ†Π΅Π»Π΅Π²Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π² плоскостях ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² процСсса, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π΄Π°ΡŽΡ‚ Π½Π°Π³Π»ΡΠ΄Π½ΡƒΡŽ ΠΈΠ»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΡŽ зависимости ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… гСомСтричСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΎΡ‚ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² сварки

    Construction Of Gas Discharge Fields With Surfaces Of Space Vehicles Using The Chemography Method

    Full text link
    The results of conceptual studies of the intensity of vacuum gas evolution of materials used in spacecraft by chemography are presented. This method is based on the fact that the mass of emitted volatile substances actively condensed on the cooled surfaces of the detector plates can be accurately measured at any distance from the surface under study, which makes it possible to predict the intensity of contamination of the optical surfaces of the spacecraft in real operating conditions

    About the Possibility of Application of Laser Vacuum Welding for the Integration of Elements of Heat-protective Structures From Powder Materials

    Full text link
    The results of studying the process of laser vacuum welding of elements of heat-shielding panels made of heat-resistant dispersion-strengthened powder materials Ni-20Cr-6Al-Ti-Y2O3 of increased strength are presented. Such materials can be used to create ultralight heat-shielding panels, which are systems integrated on the surface of aircraft from typical modules of a cellular structure. Technical solutions of heat-insulating modules are considered, which are a cellular (honeycomb) structure consisting of two plates with a thickness of 0.1 to 0.14 mm, inside which there is a thin honeycomb filler. It is shown that the small thickness of the plates and the complexity of integrating the elements into a single system significantly impair the formation of a strong connection of such elements and do not allow the direct use of the known methods of diffusion welding or vacuum brazing. It has been established that laser welding of elements of heat-shielding structures in vacuum provides satisfactory strength of the structure of the heat-shielding element as a whole. Local heating at certain points prevents deformation of the parts to be joined during the welding process. The use of a pulsed Nd:Yag laser with a power of 400–500 W, operating in the frequency range of 50–200 Hz, allows welding with or without a filler powder. It was found that the use of filler additives practically does not affect the mechanical properties of the welded joint, however, it reduces the melt zone, while increasing the density of the welded joint. Based on the results obtained, it was concluded that it is possible to use laser vacuum welding for the integration of thin elements of heat-shielding modules. It is shown that a satisfactory joint strength is achieved by ensuring high cleanliness of the surfaces of elements before welding, maintaining a high vacuum (less than 10–2 Pa) and rational thermal loading of the surfaces of the elements to be integrated. The use of the proposed process makes it possible to obtain a stronger and denser seam in comparison with the known methods of soldering multicomponent powder dispersion-strengthened material

    Estimation of Damage Development and the TIME of Failure of Cutting Inserts Made of Hard Alloys and Superhard Composites by Chemography Methods

    Full text link
    The results of theoretical and experimental studies aimed at identifying hidden defects in the structure of hard alloys and superhard composites used in the manufacture of cutting tools in order to control and predict gradual and sudden failures of cutting inserts.Damage control of cutting inserts is carried out by microscopic analysis. Deeper damage to the structure can be detected using the method of chemographic imaging. The proposed method is based on obtaining photographs of the oxidative reactions of materials of ultra-low concentrations occurring on the surface of solids under thermobaric loading.Before the moment of a sharp release of the energy of destruction, chemical processes of ultra-low concentrations are activated. Chemography allows to fix the zones where the incipient microcracks and microdefects are ready to actively develop, which can lead to the onset of macrodamage and failure to work.The chemographic image of the plate obtained as a result of the study is compared with the reference sample, as a result of which it is possible to assess the initial defect state of the material and predict the further period of the plate's operation.The criterion for the existing defects and imperfections in the structure is the change in the blackness index of the chemographic image, the minimum value of which indicates a minimum of structural defects and internal defects in the material under study.The results allow to propose a new method for controlling the surface of cutting plates, which can be easily implemented in any machine shop, which makes its application very promisin

    Forming a Defective Surface Layer When Cutting Parts Made From Carbon-carbon and Carbon-polymeric Composites

    Full text link
    We report results of theoretical and experimental research aimed at establishing the mechanisms for the formation of a defective layer at the machined surfaces made from carbon composite materials, specifically those from carbon-carbon and carbon-polymeric groups. Possessing a set of unique physical and mechanical properties, the latter are increasingly applied in aviation and space technologies. However, since the properties of a material are predetermined not only by the components applied but also by the processes to obtain products (laying of reinforcing fibers, orientation of threads), conducting mechanical tests of samples-witnesses is a compulsory stage in the operations performed.Based on the generalization of statistical and theoretical-analytical information, we have developed a model of the emergence and propagation of cracks in a quasi-fragile material, particularly the carbon-carbon and carbon-polymeric composites, caused by the action of a cutting wedge. It is shown that the stresses that occur in a surface layer predetermine the intensity of crack growth while a direction of microcracks propagation is due to the applied force load. Therefore, control over the direction of force action, as well as the application of certain technical means, including a hydroabrasive jet, could enable the localization of microcracks in small quantities at the surface of the formed edge.The established regularities in the formation of a defective layer at machining (including the hydroabrasive cutting) have made it possible to identify ways to improve the quality of a sample and to reduce the layer thickness to 0.05 mm. The derived dependences of the destruction zone parameters on the stresses that occur at cutting allowed us to obtain the rational sequence of machining transitions, at which the defective surface layer is the smallest.The results obtained provide a possibility to significantly increase the accuracy of mechanical tests of carbon composite materials, thereby reducing the variance in the measurements of controlled parameters by 30β€’40 %.The results have been actually implemented industrailly, and are of interest for the further research aimed at the hybridization of processes, as well as the development of technologies based on a functional-oriented approach
    corecore