540 research outputs found

    Estudio comparativo y selección de modelos matemáticos para el análisis del fenómeno BLEVE

    Get PDF
    La demanda de nuevos productos y la necesidad de reducir los costes de producción han conducido al desarrollo de nuevos procesos y tecnologías en la industria moderna. Estos cambios, pese al esfuerzo simultáneamente realizado para conseguir una mayor seguridad, han sido una de las razones por las que continúan ocurriendo accidentes graves, tanto en las instalaciones industriales como en el transporte de determinados productos. Entre estos accidentes ocupan un lugar significativo las explosiones que liberan a la atmósfera gases licuados o líquidos sobrecalentados y presurizados. Estos accidentes pueden ocurrir por la pérdida de las propiedades mecánicas del material con el que está construido el recipiente, por un calentamiento excesivo del mismo, en algunos casos por la abertura de una válvula de alivio que puede conducir a una expansión explosiva del vapor de un líquido en ebullición, etc. Este tipo de explosiones reciben la denominación de BLEVE, acrónimo de “Boiling Liquid Expanding Vapor Explosion”. Si el gas es inflamable, la explosión puede resultar en la probable e inmediata formación de una bola de fuego, lo cual constituye uno de los riegos térmicos más peligrosos debido a la alta radiación que puede emitir. Así, la explosión BLEVE va a menudo acompañada de la formación de una bola de fuego, por lo que, en conjunto, este tipo de accidente cuando involucra una substancia inflamable presenta simultáneamente las características de explosión e incendio, con los efectos correspondientes. Este proyecto tiene por objetivo el análisis de los efectos mecánicos de estos accidentes, es decir, la sobrepresión, mediante el estudio comparativo de los diversos modelos existentes propuestos por diferentes autores. Finalmente, se ha desarrollado una herramienta de Microsoft Excel® para estimar dicho efecto. Para verificar la funcionalidad de la herramienta, se ha aplicado a dos casos reales de los que se ha encontrado suficiente información, comparando los resultados obtenidos con los datos reales

    Gratitude and Athletes’ Life Satisfaction: The Moderating Role of Mindfulness

    Get PDF
    Life satisfaction is a critical index of well-being and is well documented in the literature as a means of protecting athletes from stress. However, minimal research has focused on the factors that contribute to life satisfaction in sports. Accordingly, we adopted the positive psychology perspective and proposed that gratitude would relate to athletes’ life satisfaction. Additionally, we further suggested that mindfulness would strengthen the relationship between gratitude and athletes’ life satisfaction. Athletes completed measurements, and the results, which indicated that athletes with higher levels of gratitude exhibited increased life satisfaction when they had higher levels of mindfulness, supported our expectations. The implications and applications are discussed in terms of mindfulness

    Continuous purification of monoclonal antibody using periodic counter-current chromatography

    Get PDF
    Integrated and continuous processing of antibody drugs offers several advantages over traditional batch processing in the biotechnology industry. The flexibility of periodic counter-current (PCC) design is performed in the selection of residence time and column numbers on the capture process. In this study, we investigated the association of residence time and product recovery in the downstream PCC purification. A practical operation of PCC as a continuous capture purification step has been applied to 5L perfusion culture, 5L concentrated fed-batch culture, and 50L fed-bath culture. Using an empirical model for the protein breakthrough curve, residence time (RT) was evaluated and the loading flow rate was adjusted to achieve a target RT of 2.25 minutes for monoclonal antibody (mAb). The sample load volume for each column switching was set on 50 and 58% breakthrough curves, mAb recovery was 88 .4% and 88.9%, and buffer consumption was decreased to under half that of the batch process. Overall, more than 40 grams of purified antibody is obtained in 24 hours using a PCC purification system. Comparison of qualities of mAb analyzed by UPLC and reverse phase chromatography show that glycan profiles and purity are quite similar between antibodies obtained from PCC and batch purification, whereas the acidic variants of mAb purified by PCC is higher than that purified by batch mode. The advantages of a continuous downstream capture step are highlighted for our case study in comparison with the existing batch chromatography processes

    Biodiesel Produced from Catalyzed Transesterification of Triglycerides Using ion-Exchanged Zeolite Beta and MCM-22

    Get PDF
    AbstractIn this work, biodiesel production from catalyzed transesterification of triglycerides with excess methanol was studied by using ion-exchanged Zeolite Beta and MCM-22 as heterogeneous catalysts. Zeolite Beta and MCM-22 were synthesized with hydrothermal processes and, subsequently, modified by ion-exchanged with alkali ions. These as-obtained zeolite catalysts could yield a high conversion of triglycerides to biodiesel. The conversion efficiency was largely affected by crystallinity and frameworks of zeolite support, pH value of alkali ion-exchange solutions and alkali loadings onto the zeolite support. Furthermore, the effects of the duration of the sodium ion-exchange process on the final conversion efficiency of triolein to biodiesel, both the as-prepared Zeolite MCM-22 and Zeolite Beta catalysts were used. The effect of the duration of the sodium ion-exchange process is insignificant in transesterification using Na-ion-exchanged Zeolite MCM-22 catalysts from 0.5 to 4h. In contrast, the conversion efficiency of triolein to biodiesel reached ca. 95% in 0.5hours of transesterification using Zeolite Beta ion-exchanged with 3 mmol-eq. Na+/g cat for 0.5hours

    Optimisation- based time slot assignment and synchronisation for TDMA MAC in industrial wireless sensor network

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166209/1/cmu2bf02232.pd

    Phase-controlled vibrational laser percussion drilling

    Get PDF
    In this study, a phase-controlled vibration was applied to a laser percussion drilling process to improve the depth of penetration. To investigate the effects of phase-controlled vibration on the depth of penetration, a novel method that controls the phase offset between the accelerating motion and the emission of the laser beam was developed. The method is based on coaxial sensing of the working surface using a photodiode, coupled with microcontroller control of the drilling laser operation. Through real-time optical signal acquisition and analysis of laser machining processes, correlations between the accelerating motion and the emission of the laser beam were simultaneously obtained. All of the processing work was performed in air at standard atmospheric conditions, and gas assist was not used. This study showed that the application of phase-controlled vibration improved the depth of penetration in laser percussion machining and can contribute to the development of precision drilling in the industry

    Gaseous, PM2.5 Mass, and Speciated Emission Factors from Laboratory Chamber Peat Combustion

    Get PDF
    Peat fuels representing four biomes of boreal (western Russia and Siberia), temperate (northern Alaska, USA), subtropical (northern and southern Florida, USA), and tropical (Borneo, Malaysia) regions were burned in a laboratory chamber to determine gas and particle emission factors (EFs). Tests with 25 % fuel moisture were conducted with predominant smoldering combustion conditions (average modified combustion efficiency (MCE) =0.82+/-0.08). Average fuel-based EFCO2 (carbon dioxide) are highest (1400 +/- 38 g kg(-1)) and lowest (1073 +/- 63 g kg(-1)) for the Alaskan and Russian peats, respectively. EFCO (carbon monoxide) and EFCH4 (methane) are similar to 12 %15 % and similar to 0.3 %0.9 % of EFCO2, in the range of 157171 and 310 g kg(-1), respectively. EFs for nitrogen species are at the same magnitude as EFCH4, with an average of 5.6 +/- 4.8 and 4.7 +/- 3.1 g kg(-1) for EFNH3 (ammonia) and EFHCN (hydrogen cyanide); 1.9+/-1.1 g kg(-1) for EFNOx (nitrogen oxides); and 2.4+/-1.4 and 2.0 +/- 0.7 g kg(-1) for EFNOy (total reactive nitrogen) and EFN2O (nitrous oxide). An oxidation flow reactor (OFR) was used to simulate atmospheric aging times of similar to 2 and similar to 7 d to compare fresh (upstream) and aged (downstream) emissions. Filter-based EFPM2.5 varied by \u3e 4-fold (1461 g kg(-1)) without appreciable changes between fresh and aged emissions. The majority of EFPM2.5 consists of EFOC (organic carbon), with EFOC / EFPM2.5 ratios in the range of 52 %98 % for fresh emissions and similar to 14 %23 % degradation after aging. Reductions of EFOC (similar to 79 g kg(-1)) after aging are most apparent for boreal peats, with the largest degradation in low-temperature OC1 that evolves at \u3c 140 degrees C, indicating the loss of high-vapor-pressure semivolatile organic compounds upon aging. The highest EFLevoglucosan is found for Russian peat (similar to 16 g kg(-1)), with similar to 35 %50 % degradation after aging. EFs for water-soluble OC (EFWSOC) account for similar to 20 %62 % of fresh EFOC. The majority (\u3e 95 %) of the total emitted carbon is in the gas phase, with 54 %75 % CO2, followed by 8 %30 % CO. Nitrogen in the measured species explains 24 %52 % of the consumed fuel nitrogen, with an average of 35 +/- 11 %, consistent with past studies that report similar to 1/3 to 2/3 of the fuel nitrogen measured in biomass smoke. The majority (\u3e 99 %) of the total emitted nitrogen is in the gas phase, with an average of 16.7 % as NH3 and 9.5 % as HCN center dot N2O and NOy constituted 5.7 % and 2.9 % of consumed fuel nitrogen. EFs from this study can be used to refine current emission inventories

    Fucosyltransferase 1 and 2 play pivotal roles in breast cancer cells.

    Get PDF
    FUT1 and FUT2 encode alpha 1, 2-fucosyltransferases which catalyze the addition of alpha 1, 2-linked fucose to glycans. Glycan products of FUT1 and FUT2, such as Globo H and Lewis Y, are highly expressed on malignant tissues, including breast cancer. Herein, we investigated the roles of FUT1 and FUT2 in breast cancer. Silencing of FUT1 or FUT2 by shRNAs inhibited cell proliferation in vitro and tumorigenicity in mice. This was associated with diminished properties of cancer stem cell (CSC), including mammosphere formation and CSC marker both in vitro and in xenografts. Silencing of FUT2, but not FUT1, significantly changed the cuboidal morphology to dense clusters of small and round cells with reduced adhesion to polystyrene and extracellular matrix, including laminin, fibronectin and collagen. Silencing of FUT1 or FUT2 suppressed cell migration in wound healing assay, whereas FUT1 and FUT2 overexpression increased cell migration and invasion in vitro and metastasis of breast cancer in vivo. A decrease in mesenchymal like markers such as fibronectin, vimentin, and twist, along with increased epithelial like marker, E-cadherin, was observed upon FUT1/2 knockdown, while the opposite was noted by overexpression of FUT1 or FUT2. As expected, FUT1 or FUT2 knockdown reduced Globo H, whereas FUT1 or FUT2 overexpression showed contrary effects. Exogenous addition of Globo H-ceramide reversed the suppression of cell migration by FUT1 knockdown but not the inhibition of cell adhesion by FUT2 silencing, suggesting that at least part of the effects of FUT1/2 knockdown were mediated by Globo H. Our results imply that FUT1 and FUT2 play important roles in regulating growth, adhesion, migration and CSC properties of breast cancer, and may serve as therapeutic targets for breast cancer

    Periodic counter-current chromatography for continuous purification of monoclonal antibody

    Get PDF
    Integrated and continuous processing of antibody drugs offers several advantages over traditional batch processing in the biotechnology industry. The flexibility of periodic counter-current (PCC) design is performed in the selection of residence time and column numbers on the capture process. In this study, we investigate the association of residence time and product recovery in the downstream PCC purification. A practical operation of PCC as a continuous capture purification step has been applied to 50L feed-bath culture, 5L perfusion culture and 5L concentrated feed-batch culture. Protein breakthrough curve was determined for the appropriate column switching strategy. Using an empirical model for the protein breakthrough curve, residence time (RT) was evaluated and the loading flow rate was adjusted to achieve a target RT of 2.25 minutes for monoclonal antibody (mAb). The sample load volume for each column switching was set on 50-58% breakthrough curves, mAb recovery was 83-92%, and buffer consumption was decreased to under half that of the batch process. Overall, 1.0 to 1.5 gram mAb was obtained for per milliliter resin in 24 hours using a PCC purification system. We used size exclusion-high performance liquid chromatography to confirm composition and masses of our fragment samples. Comparison of qualities of mAb analyzed by UPLC and reverse phase chromatography show that glycan profiles and purity are quite similar between PCC and Avant purification, whereas that for acidic variants are different, the acidic variants of mAb purified by PCC is higher than that purified by Avant. The advantages of a continuous downstream capture step are highlighted for our case study in comparison with the existing batch chromatography processes. The use of PCC improves the higher resin capacity utilization and lower buffer consumption
    corecore