30,079 research outputs found

    Optical study of phase transitions in single-crystalline RuP

    Full text link
    RuP single crystals of MnP-type orthorhombic structure were synthesized by the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal that the compound experiences two structural phase transitions, which are further confirmed by enormous anomalies shown in temperature-dependent resistivity and magnetic susceptibility. Particularly, the resistivity drops monotonically upon temperature cooling below the second transition, indicating that the material shows metallic behavior, in sharp contrast with the insulating ground state of polycrystalline samples. Optical conductivity measurements were also performed in order to unravel the mechanism of these two transitions. The measurement revealed a sudden reconstruction of band structure over a broad energy scale and a significant removal of conducting carriers below the first phase transition, while a charge-density-wave-like energy gap opens below the second phase transition.Comment: 5 pages, 6 figure

    Non-magnetic B-site Impurities Induce Ferromagnetic Tendencies in CE Manganites

    Full text link
    Using a two-orbital model and Monte Carlo simulations, we investigate the effect of nonmagnetic B-site substitution on half-doped CE-type manganites. The lattice defects induced by this substitution destabilize the CE phase, which transforms into (1) the ferromagnetic (FM) metallic competing state, or (2) a regime with short-range FM clusters, or (3) a spin-glass state, depending on couplings and on the valence of the B-site substitution. While a C-type antiferromagnetic state is usually associated with an average ege_{\rm g} charge density less than 0.5, the nonmagnetic B-site substitution that lowers the ege_{\rm g} charge density is still found to enhance the FM tendency in our simulations. The present calculations are in qualitative agreement with experiments and provide a rationalization for the complex role of nonmagnetic B-site substitution in modulating the phase transitions in manganites.Comment: 8 pages, 5 figure

    Optical spectroscopy study of the collapsed tetragonal phase of CaFe2_2(As0.935_{0.935}P0.065_{0.065})2_2 single crystals

    Full text link
    We present an optical spectroscopy study on P-doped CaFe2_2As2_2 which experiences a structural phase transition from tetragonal to collapsed tetragonal (cT) phase near 75 K. The measurement reveals a sudden reduction of low frequency spectral weight and emergence of a new feature near 3200 \cm (0.4 eV) in optical conductivity across the transition, indicating an abrupt reconstruction of band structure. The appearance of new feature is related to the interband transition arising from the sinking of hole bands near Γ\Gamma point below Fermi level in the cT phase, as expected from the density function theory calculations in combination with the dynamical mean field theory. However, the reduction of Drude spectral weight is at variance with those calculations. The measurement also indicates an absence of the abnormal spectral weight transfer at high energy (near 0.5-0.7 eV) in the cT phase, suggesting a suppression of electron correlation effect.Comment: 6 pages, 4 figure

    2-D DOA Estimation for L-Shaped Array With Array Aperture and Snapshots Extension Techniques

    Get PDF
    A two-dimensional (2-D) direction of arrival estimation method for L-shaped array with automatic pairing is proposed. It exploits the conjugate symmetry property of the array manifold matrix to increase the effective array aperture and the number of virtual snapshots simultaneously, and then applies the principle of MUSIC to construct an angle cost function and transforms the conventional 2-D search into 1-D via a Rayleigh quotient, which can greatly reduce the computation complexity. Finally, the azimuth and elevation angles are estimated without pair matching. Simulation results show that the proposed method has a better performance and can resolve more sources than some existing computationally efficient methods

    ε-Strong Simulation of Fractional Brownian Motion and Related Stochastic Differential Equations

    Get PDF
    Consider a fractional Brownian motion (fBM) BH={BH(t):t∈[0,1]} with Hurst index H∈(0,1). We construct a probability space supporting both BH and a fully simulatable process B⌢Hε such that supt∈[0,1]∣∣∣BH(t)−B⌢H∈(t)∣∣∣≤ε with probability one for any user-specified error bound ɛ>0. When H>1/2, we further enhance our error guarantee to the α-Hölder norm for any α∈(1/2,H). This enables us to extend our algorithm to the simulation of fBM-driven stochastic differential equations Y={Y(t):t∈[0,1]}. Under mild regularity conditions on the drift and diffusion coefficients of Y, we construct a probability space supporting both Y and a fully simulatable process Y⌢ε such that supt∈[0,1]∣∣Y(t)−Y⌢ε(t)∣∣≤ε with probability one. Our algorithms enjoy the tolerance-enforcement feature, under which the error bounds can be updated sequentially in an efficient way. Thus, the algorithms can be readily combined with other advanced simulation techniques to estimate the expectations of functionals of fBMs efficiently

    Heavy and Light Quarks with Lattice Chiral Fermions

    Full text link
    The feasibility of using lattice chiral fermions which are free of O(a)O(a) errors for both the heavy and light quarks is examined. The fact that the effective quark propagators in these fermions have the same form as that in the continuum with the quark mass being only an additive parameter to a chirally symmetric antihermitian Dirac operator is highlighted. This implies that there is no distinction between the heavy and light quarks and no mass dependent tuning of the action or operators as long as the discretization error O(m2a2)O(m^2 a^2) is negligible. Using the overlap fermion, we find that the O(m2a2)O(m^2a^2) (and O(ma2)O(ma^2)) errors in the dispersion relations of the pseudoscalar and vector mesons and the renormalization of the axial-vector current and scalar density are small. This suggests that the applicable range of mama may be extended to 0.56\sim 0.56 with only 5% error, which is a factor of 2.4\sim 2.4 larger than that of the improved Wilson action. We show that the generalized Gell-Mann-Oakes-Renner relation with unequal masses can be utilized to determine the finite mama errors in the renormalization of the matrix elements for the heavy-light decay constants and semileptonic decay constants of the B/D meson.Comment: final version to appear in Int. Jou. Mod. Phys.

    Effects of losses in the hybrid atom-light interferometer

    Get PDF
    Enhanced Raman scattering can be obtained by injecting a seeded light field which is correlated with the initially prepared collective atomic excitation. This Raman amplification process can be used to realize atom-light hybrid interferometer. We numerically calculate the phase sensitivities and the signal-to-noise ratios of this interferometer with the method of homodyne detection and intensity detection, and give their differences between this two methods. In the presence of loss of light field and atomic decoherence the measure precision will be reduced which can be explained by the break of the intermode decorrelation conditions of output modesComment: 9 pages, 7 figure

    Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2

    Full text link
    The in-plane resistivity ρ\rho and thermal conductivity κ\kappa of FeAs-based superconductor KFe2_2As2_2 single crystal were measured down to 50 mK. We observe non-Fermi-liquid behavior ρ(T)T1.5\rho(T) \sim T^{1.5} at Hc2H_{c_2} = 5 T, and the development of a Fermi liquid state with ρ(T)T2\rho(T) \sim T^2 when further increasing field. This suggests a field-induced quantum critical point, occurring at the superconducting upper critical field Hc2H_{c_2}. In zero field there is a large residual linear term κ0/T\kappa_0/T, and the field dependence of κ0/T\kappa_0/T mimics that in d-wave cuprate superconductors. This indicates that the superconducting gaps in KFe2_2As2_2 have nodes, likely d-wave symmetry. Such a nodal superconductivity is attributed to the antiferromagnetic spin fluctuations near the quantum critical point.Comment: 4 pages, 4 figures - replaces arXiv:0909.485
    corecore