21,137 research outputs found
Optimization-based interactive segmentation interface for multiregion problems.
Interactive segmentation is becoming of increasing interest to the medical imaging community in that it combines the positive aspects of both manual and automated segmentation. However, general-purpose tools have been lacking in terms of segmenting multiple regions simultaneously with a high degree of coupling between groups of labels. Hierarchical max-flow segmentation has taken advantage of this coupling for individual applications, but until recently, these algorithms were constrained to a particular hierarchy and could not be considered general-purpose. In a generalized form, the hierarchy for any given segmentation problem is specified in run-time, allowing different hierarchies to be quickly explored. We present an interactive segmentation interface, which uses generalized hierarchical max-flow for optimization-based multiregion segmentation guided by user-defined seeds. Applications in cardiac and neonatal brain segmentation are given as example applications of its generality
An Iterative Cyclic Algorithm for Designing Vaccine Distribution Networks in Low and Middle-Income Countries
The World Health Organization's Expanded Programme on Immunization (WHO-EPI)
was developed to ensure that all children have access to common childhood
vaccinations. Unfortunately, because of inefficient distribution networks and
cost constraints, millions of children in many low and middle-income countries
still go without being vaccinated. In this paper, we formulate a mathematical
programming model for the design of a typical WHO-EPI network with the goal of
minimizing costs while providing the opportunity for universal coverage. Since
it is only possible to solve small versions of the model optimally, we describe
an iterative heuristic that cycles between solving restrictions of the original
problem and show that it can find very good solutions in reasonable time for
larger problems that are not directly solvable.Comment: International Joint Conference on Industrial Engineering and
Operations Management- ABEPRO-ADINGOR-IISE-AIM-ASEM (IJCIEOM 2019). Novi Sad,
Serbia, July 15-17t
Evolution of the second lowest extended state as a function of the effective magnetic field in the fractional quantum hall regime
It has been shown that, at a Landau level filling factor v=1/2, a two-dimensional electron system can be mathematically transformed into a composite fermion system interacting with a Chern-Simons gauge field. At v=1/2, the average of this Chern-Simons gauge field cancels the external magnetic field B-ext so that the effective magnetic field B-eff acting on the composite fermions is zero. Away from v=1/2, the composite fermions experience a net effective magnetic field B-eff. We present the first study of the evolution of the second lowest extended state in a vanishing effective magnetic field in the fractional quantum Hall regime. Our result shows that the evolution of the second lowest extended state has a good linear dependence on the effective magnetic field Beff within the composite fermion picture
Interleukin-2 Confers Cardioprotection by Inhibiting Mitochondrial Permeability Transition Pore
In the present study, we determined whether interleukin-2 (IL-2) confers cardioprotection by inhibiting mitochondria permeability transition pore (MPTP) opening. In isolated rat hearts subject to 30 min ischemia and 120 min reperfusion (IR), IL-2 (50 U/ml) decreased the infarct size and LDH release, effects blocked by a selective kappa-opioid receptor antagonist, Nor-BNI (5 microM) or an opener of MPTP, atractyloside (Atr, 20 microM). In isolated ventricular myocytes subjected to anoxia and reoxygenation (AR), which reduced both the amplitude of the electrically induced [Ca2+]i transient and diastolic [Ca2+]i, IL-2 attenuated the AR-induced alterations and their effects were abolished by Atr. In addition, IL-2 attenuated the reduction in calcein fluorescence in myocytes subject to AR and reduced calcium-induced swelling in mitochondria of rat hearts subjected to IR, which were similar to effect of inhibitor of MPTP. The observations indicated that IL-2 confers cardioprotection by inhibiting the MPTP opening.published_or_final_versio
Approximating Weighted Duo-Preservation in Comparative Genomics
Motivated by comparative genomics, Chen et al. [9] introduced the Maximum
Duo-preservation String Mapping (MDSM) problem in which we are given two
strings and from the same alphabet and the goal is to find a
mapping between them so as to maximize the number of duos preserved. A
duo is any two consecutive characters in a string and it is preserved in the
mapping if its two consecutive characters in are mapped to same two
consecutive characters in . The MDSM problem is known to be NP-hard and
there are approximation algorithms for this problem [3, 5, 13], but all of them
consider only the "unweighted" version of the problem in the sense that a duo
from is preserved by mapping to any same duo in regardless of their
positions in the respective strings. However, it is well-desired in comparative
genomics to find mappings that consider preserving duos that are "closer" to
each other under some distance measure [19]. In this paper, we introduce a
generalized version of the problem, called the Maximum-Weight Duo-preservation
String Mapping (MWDSM) problem that captures both duos-preservation and
duos-distance measures in the sense that mapping a duo from to each
preserved duo in has a weight, indicating the "closeness" of the two
duos. The objective of the MWDSM problem is to find a mapping so as to maximize
the total weight of preserved duos. In this paper, we give a polynomial-time
6-approximation algorithm for this problem.Comment: Appeared in proceedings of the 23rd International Computing and
Combinatorics Conference (COCOON 2017
Structural and magnetic phase diagram of CeFeAsO1-xFx and its relationship to high-temperature superconductivity
We use neutron scattering to study the structural and magnetic phase
transitions in the iron pnictides CeFeAsO1-xFx as the system is tuned from a
semimetal to a high-transition-temperature (high-Tc) superconductor through
Fluorine (F) doping x. In the undoped state, CeFeAsO develops a structural
lattice distortion followed by a stripe like commensurate antiferromagnetic
order with decreasing temperature. With increasing Fluorine doping, the
structural phase transition decreases gradually while the antiferromagnetic
order is suppressed before the appearance of superconductivity, resulting an
electronic phase diagram remarkably similar to that of the high-Tc copper
oxides. Comparison of the structural evolution of CeFeAsO1-xFx with other
Fe-based superconductors reveals that the effective electronic band width
decreases systematically for materials with higher Tc. The results suggest that
electron correlation effects are important for the mechanism of high-Tc
superconductivity in these Fe pnictides.Comment: 19 pages, 5 figure
Streptokinase is ineffective in restoring early myocardial reperfusion in Asian patients with acute myocardial infarction
published_or_final_versio
HAGE (DDX43) is a biomarker for poor prognosis and a predictor of chemotherapy response in breast cancer
Background: HAGE protein is a known immunogenic cancer-specific antigen. Methods: The biological, prognostic and predictive values of HAGE expression was studied using immunohistochemistry in three cohorts of patients with BC (n=2147): early primary (EP-BC; n=1676); primary oestrogen receptor-negative (PER-BC; n=275) treated with adjuvant anthracycline-combination therapies (Adjuvant-ACT); and primary locally advanced disease (PLA-BC) who received neo-adjuvant anthracycline-combination therapies (Neo-adjuvant-ACT; n=196). The relationship between HAGE expression and the tumour-infiltrating lymphocytes (TILs) in matched prechemotherapy and postchemotherapy samples were investigated. Results: Eight percent of patients with EP-BC exhibited high HAGE expression (HAGEþ) and was associated with aggressive clinico-pathological features (Ps<0.01). Furthermore, HAGEþexpression was associated with poor prognosis in both univariate and multivariate analysis (Ps<0.001). Patients with HAGE+ did not benefit from hormonal therapy in high-risk ER-positive disease. HAGE+ and TILs were found to be independent predictors for pathological complete response to neoadjuvant-ACT; P<0.001. A statistically significant loss of HAGE expression following neoadjuvant-ACT was found (P=0.000001), and progression-free survival was worse in those patients who had HAGE+ residual disease (P=0.0003). Conclusions: This is the first report to show HAGE to be a potential prognostic marker and a predictor of response to ACT in patients with BC
Static non-reciprocity in mechanical metamaterials
Reciprocity is a fundamental principle governing various physical systems,
which ensures that the transfer function between any two points in space is
identical, regardless of geometrical or material asymmetries. Breaking this
transmission symmetry offers enhanced control over signal transport, isolation
and source protection. So far, devices that break reciprocity have been mostly
considered in dynamic systems, for electromagnetic, acoustic and mechanical
wave propagation associated with spatio-temporal variations. Here we show that
it is possible to strongly break reciprocity in static systems, realizing
mechanical metamaterials that, by combining large nonlinearities with suitable
geometrical asymmetries, and possibly topological features, exhibit vastly
different output displacements under excitation from different sides, as well
as one-way displacement amplification. In addition to extending non-reciprocity
and isolation to statics, our work sheds new light on the understanding of
energy propagation in non-linear materials with asymmetric crystalline
structures and topological properties, opening avenues for energy absorption,
conversion and harvesting, soft robotics, prosthetics and optomechanics.Comment: 19 pages, 3 figures, Supplementary information (11 pages and 5
figures
Validation and application of an ensemble Kalman filter in the Selat Pauh of Singapore
The effectiveness of an ensemble Kalman filter (EnKF) is assessed in the Selat Pauh of Singapore using observing system simulation experiment. Perfect model experiments are first considered. The perfect model experiments examine the EnKF in reducing the initial perturbations with no further errors than those in the initial conditions. Current velocity at 15 observational sites from the true ocean is assimilated every hour into the false ocean. While EnKF reduces the initial velocity error during the first few hours, it fails after one tidal cycle (approximately 12 h) due to the rapid convergence of the ensemble members. Successively, errors are introduced in the surface wind forcing. A random perturbation ε [epsilon] is applied independently to each ensemble member to maintain the ensemble spread. The assimilation results showed that the success of EnKF depends critically on the presence of ε [epsilon], yet it is not sensitive to the magnitude of ε [epsilon], at least in the range of weak to moderate perturbations. Although all experiments were made with EnKF only, the results could be applicable in general to all other ensemble-based data assimilation methods.United States. Office of Naval ResearchSingapore. National Research FoundationSingapore-MIT Alliance for Research and Technology CenterSingapore-MIT Alliance. Center for Environmental Sensing and Monitorin
- …
