5,361 research outputs found

    Nucleons Properties at Finite Lattice Spacing in Chiral Perturbation Theory

    Full text link
    Properties of the proton and neutron are studied in partially-quenched chiral perturbation theory at finite lattice spacing. Masses, magnetic moments, the matrix elements of isovector twist-2 operators and axial-vector currents are examined at the one-loop level in a double expansion in the light-quark masses and the lattice spacing. This work will be useful in extrapolating the results of simulations using Wilson valence and sea quarks, as well as simulations using Wilson sea quarks and Ginsparg-Wilson valence quarks, to the continuum.Comment: 16 pages LaTe

    Hadronic Electromagnetic Properties at Finite Lattice Spacing

    Full text link
    Electromagnetic properties of the octet mesons as well as the octet and decuplet baryons are augmented in quenched and partially quenched chiral perturbation theory to include O(a) corrections due to lattice discretization. We present the results for the SU(3) flavor group in the isospin limit as well as the results for SU(2) flavor with non-degenerate quarks. These corrections will be useful for extrapolation of lattice calculations using Wilson valence and sea quarks, as well as calculations using Wilson sea quarks and Ginsparg-Wilson valence quarks.Comment: 19 pages, 0 figures, RevTeX

    The Structure of TGBC_C Phases

    Full text link
    We study the transition from the cholesteric phase to two TGBC_C phases near the upper critical twist kc2k_{c2}: the Renn-Lubensky TGBC_C phase, with layer normal rotating in a plane perpendicular to the pitch axis, and the Bordeaux TGBC_C phase, with the layer normal rotating on a cone parallel to the pitch axis. We calculate properties, including order-parameter profiles, of both phases.Comment: 4 pages, 4 figures, Submitted to Physical Review E, Rapid Communications, September 5, 2003; Revised manuscript (to the paper submitted on March 18, 2003, cond-mat/0303365)that includes an important missing reference and presents an improved analysis of a generalized mode

    Baryon Decuplet to Octet Electromagnetic Transitions in Quenched and Partially Quenched Chiral Perturbation Theory

    Full text link
    We calculate baryon decuplet to octet electromagnetic transition form factors in quenched and partially quenched chiral perturbation theory. We work in the isospin limit of SU(3) flavor, up to next-to-leading order in the chiral expansion, and to leading order in the heavy baryon expansion. Our results are necessary for proper extrapolation of lattice calculations of these transitions. We also derive expressions for the case of SU(2) flavor away from the isospin limit.Comment: 16 pages, 3 figures, revtex

    Numerical renormalization group study of the 1D t-J model

    Full text link
    The one-dimensional (1D) tJt-J model is investigated using the density matrix renormalization group (DMRG) method. We report for the first time a generalization of the DMRG method to the case of arbitrary band filling and prove a theorem with respect to the reduced density matrix that accelerates the numerical computation. Lastly, using the extended DMRG method, we present the ground state electron momentum distribution, spin and charge correlation functions. The 3kF3k_F anomaly of the momentum distribution function first discussed by Ogata and Shiba is shown to disappear as JJ increases. We also argue that there exists a density-independent JcJ_c beyond which the system becomes an electron solid.Comment: Wrong set of figures were put in the orginal submissio

    Low-energy properties and magnetization plateaus in a 2-leg mixed spin ladder

    Full text link
    Using the density matrix renormalization group technique we investigate the low-energy properties and the magnetization plateau behavior in a 2-leg mixed spin ladder consisting of a spin-1/2 chain coupled with a spin-1 chain. The calculated results show that the system is in the same universality class as the spin-3/2 chain when the interchain coupling is strongly ferromagnetic, but the similarity between the two systems is less clear under other coupling conditions. We have identified two types of magnetization plateau phases. The calculation of the magnetization distribution on the spin-1/2 and the spin-1 chains on the ladder shows that one plateau phase is related to the partially magnetized valence-bond-solid state, and the other plateau state contains strongly coupled S=1 and s=1/2 spins on the rung.Comment: 6 pages with 8 eps figure

    Axial-flexural coupled vibration and buckling of composite beams using sinusoidal shear deformation theory

    Get PDF
    A finite element model based on sinusoidal shear deformation theory is developed to study vibration and buckling analysis of composite beams with arbitrary lay-ups. This theory satisfies the zero traction boundary conditions on the top and bottom surfaces of beam without using shear correction factors. Besides, it has strong similarity with Euler–Bernoulli beam theory in some aspects such as governing equations, boundary conditions, and stress resultant expressions. By using Hamilton’s principle, governing equations of motion are derived. A displacement-based one-dimensional finite element model is developed to solve the problem. Numerical results for cross-ply and angle-ply composite beams are obtained as special cases and are compared with other solutions available in the literature. A variety of parametric studies are conducted to demonstrate the effect of fiber orientation and modulus ratio on the natural frequencies, critical buckling loads, and load-frequency curves as well as corresponding mode shapes of composite beams

    Quasi-Periodic Releases of Streamer Blobs and Velocity Variability of the Slow Solar Wind near the Sun

    Full text link
    We search for persistent and quasi-periodic release events of streamer blobs during 2007 with the Large Angle Spectrometric Coronagraph on the \textit{Solar and Heliospheric Observatory} and assess the velocity of the slow solar wind along the plasma sheet above the corresponding streamer by measuring the dynamic parameters of blobs. We find 10 quasi-periodic release events of streamer blobs lasting for three to four days. In each day of these events, we observe three-five blobs. The results are in line with previous studies using data observed near the last solar minimum. Using the measured blob velocity as a proxy for that of the mean flow, we suggest that the velocity of the background slow solar wind near the Sun can vary significantly within a few hours. This provides an observational manifestation of the large velocity variability of the slow solar wind near the Sun.Comment: 14 pages, 5 figures, accepted by Soalr Physic

    Understanding wavelength scaling in 19-cell core hollow-core photonic bandgap fibers

    No full text
    First experimental wavelength scaling in 19-cell core HC-PBGF indicates that the minimum loss waveband occurs at longer wavelengths than previously predicted. Record low loss (2.5dB/km) fibers operating around 2µm and gas-purging experiments are also reported
    corecore