231,688 research outputs found
Adaptation of multidimensional group particle tracking and particle wall-boundary condition model to the FDNS code
A particulate two-phase flow CFD model was developed based on the FDNS code which is a pressure based predictor plus multi-corrector Navier-Stokes flow solver. Turbulence models with compressibility correction and the wall function models were employed as submodels. A finite-rate chemistry model was used for reacting flow simulation. For particulate two-phase flow simulations, a Eulerian-Lagrangian solution method using an efficient implicit particle trajectory integration scheme was developed in this study. Effects of particle-gas reaction and particle size change to agglomeration or fragmentation were not considered in this investigation. At the onset of the present study, a two-dimensional version of FDNS which had been modified to treat Lagrangian tracking of particles (FDNS-2DEL) had already been written and was operational. The FDNS-2DEL code was too slow for practical use, mainly because it had not been written in a form amenable to vectorization on the Cray, nor was the full three-dimensional form of FDNS utilized. The specific objective of this study was to reorder to calculations into long single arrays for automatic vectorization on the Cray and to implement the full three-dimensional version of FDNS to produce the FDNS-3DEL code. Since the FDNS-2DEL code was slow, a very limited number of test cases had been run with it. This study was also intended to increase the number of cases simulated to verify and improve, as necessary, the particle tracking methodology coded in FDNS
Adsorption/desorption and electrically controlled flipping of ammonia molecules on graphene
In this paper, we evaluate of the adsorption/ desorption of ammonia molecules
on a graphene surface by studying the Fermi level shift. Based on a physically
plausible model, the adsorption and desorption rates of ammonia molecules on
graphene have been extracted from the measured Fermi level shift as a function
of exposure time. An electric field-induced flipping behavior of ammonia
molecules on graphene is suggested, based on field effect transistor (FET)
measurements
Stability Of contact discontinuity for steady Euler System in infinite duct
In this paper, we prove structural stability of contact discontinuities for
full Euler system
Marginally Trapped Surfaces in the Nonsymmetric Gravitational Theory
We consider a simple, physical approach to the problem of marginally trapped
surfaces in the Nonsymmetric Gravitational Theory (NGT). We apply this approach
to a particular spherically symmetric, Wyman sector gravitational field,
consisting of a pulse in the antisymmetric field variable. We demonstrate that
marginally trapped surfaces do exist for this choice of initial data.Comment: REVTeX 3.0 with epsf macros and AMS symbols, 3 pages, 1 figur
Molecular beam epitaxial growth of high-quality InSb on InP and GaAs substrates
Epitaxial layers of InSb were grown on InP and GaAs substrates by molecular beam epitaxy. The dependence of the epilayer quality on flux ratio, J sub Sb4/J sub In, was studied. Deviation from an optimum value of J sub Sb4/J sub In (approx. 2) during growth led to deterioration in the surface morphology and the electrical and crystalline qualities of the films. Room temperature electron mobilities as high as 70,000 and 53,000 sq cm /V-s were measured in InSb layers grown on InP and GaAs substrates, respectively. Unlike the previous results, the conductivity in these films is n-type even at T = 13 K, and no degradation of the electron mobility due to the high density of dislocations was observed. The measured electron mobilities (and carrier concentrations) at 77 K in InSb layers grown on InP and GaAs substrates are 110,000 sq cm/V-s (3 x 10(15) cm(-3)) and 55,000 sq cm/V-s (4.95 x 10(15) cm(-3)), respectively, suggesting their application to electronic devices at cryogenic temperatures
- …