65,146 research outputs found

    Dense attosecond electron sheets from laser wakefields using an up-ramp density transition

    Get PDF
    Controlled electron injection into a laser-driven wakefield at a well defined space and time is reported based on particle-in-cell simulations. Key novel ingredients are an underdense plasma target with an up-ramp density profile followed by a plateau and a fairly large laser focus diameter that leads to an essentially one-dimensional (1D) regime of laser wakefield, which is different from the bubble (complete blowout) regime occurring for tightly focused drive beams. The up-ramp profile causes 1D wave breaking to occur sharply at the up-ramp-plateau transition. As a result, it generates an ultrathin (few nanometer, corresponding to attosecond duration), strongly overdense relativistic electron sheet that is injected and accelerated in the wakefield. A peaked electron energy spectrum and high charge (∼nC) distinguish the final sheet

    Intrinsic hole mobility and trapping in a regio-regular poly(thiophene)

    Full text link
    The transport properties of high-performance thin-film transistors (TFT) made with a regio-regular poly(thiophene) semiconductor (PQT-12) are reported. The room-temperature field-effect mobility of the devices varied between 0.004 cm2/V s and 0.1 cm2/V s and was controlled through thermal processing of the material, which modified the structural order. The transport properties of TFTs were studied as a function of temperature. The field-effect mobility is thermally activated in all films at T<200 K and the activation energy depends on the charge density in the channel. The experimental data is compared to theoretical models for transport, and we argue that a model based on the existence of a mobility edge and an exponential distribution of traps provides the best interpretation of the data. The differences in room-temperature mobility are attributed to different widths of the shallow localized state distribution at the edge of the valence band due to structural disorder in the film. The free carrier mobility of the mobile states in the ordered regions of the film is the same in all structural modifications and is estimated to be between 1 and 4 cm2/V s.Comment: 20 pages, 8 figure

    Control of electron spin decoherence caused by electron-nuclear spin dynamics in a quantum dot

    Full text link
    Control of electron spin decoherence in contact with a mesoscopic bath of many interacting nuclear spins in an InAs quantum dot is studied by solving the coupled quantum dynamics. The nuclear spin bath, because of its bifurcated evolution predicated on the electron spin up or down state, measures the which-state information of the electron spin and hence diminishes its coherence. The many-body dynamics of nuclear spin bath is solved with a pair-correlation approximation. In the relevant timescale, nuclear pair-wise flip-flops, as elementary excitations in the mesoscopic bath, can be mapped into the precession of non-interacting pseudo-spins. Such mapping provides a geometrical picture for understanding the decoherence and for devising control schemes. A close examination of nuclear bath dynamics reveals a wealth of phenomena and new possibilities of controlling the electron spin decoherence. For example, when the electron spin is flipped by a π\pi-pulse at τ\tau, its coherence will partially recover at 2τ\sqrt{2}\tau as a consequence of quantum disentanglement from the mesoscopic bath. In contrast to the re-focusing of inhomogeneously broadened phases by conventional spin-echoes, the disentanglement is realized through shepherding quantum evolution of the bath state via control of the quantum object. A concatenated construction of pulse sequences can eliminate the decoherence with arbitrary accuracy, with the nuclear-nuclear spin interaction strength acting as the controlling small parameter

    Primary Isotope Yields and Characteristic Properties of the Fragmenting Source in Heavy-ion Reactions near the Fermi Energies

    Get PDF
    For central collisions of 40^{40}Ca +40+ ^{40}Ca at 35 MeV/nucleon, the density and temperature of a fragmenting source have been evaluated in a self-consistent manner using the ratio of the symmetry energy coefficient relative to the temperature, asym/Ta_{sym}/T, extracted from the yields of primary isotopes produced in antisymmetrized molecular dynamics (AMD) simulations. The asym/Ta_{sym}/T values are extracted from all isotope yields using an improved method based on the Modified Fisher Model (MFM). The values of asym/Ta_{sym}/T obtained, using different interactions with different density dependencies of the symmetry energy term, are correlated with the values of the symmetry energies at the density of fragment formation. Using this correlation, the fragment formation density is found to be ρ/ρ0=0.67±0.02\rho/\rho_0 = 0.67 \pm 0.02. Using the input symmetry energy value for each interaction temperature values are extracted as a function of isotope mass AA. The extracted temperature values are compared with those evaluated from the fluctuation thermometer with a radial flow correction.Comment: 10 pages, 8 figure

    Spectroscopy of the rotating BTZ black hole via adiabatic invariance

    Full text link
    According to Bohr-Sommerfeld quantization rule, an equally spaced horizon area spectrum of a static, spherically symmetric black hole was obtained under an adiabatic invariant action. This method can be extended to the rotating black holes. As an example, we apply this method to the rotating BTZ black hole and obtain the quantized spectrum of the horizon area. It is shown that the area spectrum of the rotating BTZ black hole is equally spaced and irrelevant to the rotating parameter, which is consistent with the Bekenstein conjecture. Specifically, the derivation do not need the quasinormal frequencies and the small angular momentum limit.Comment: 6 pages, 0 figures, to appear in Sci China Ser G-Phys Mech Astron. arXiv admin note: text overlap with arXiv:1106.229

    Alfvenic Ion Temperature Gradient Activities in a Weak Magnetic Shear Plasma

    Full text link
    We report the first experimental evidence of Alfvenic ion temperature gradient (AITG) modes in HL-2A Ohmic plasmas. A group of oscillations with f=1540f=15-40 kHz and n=36n=3-6 is detected by various diagnostics in high-density Ohmic regimes. They appear in the plasmas with peaked density profiles and weak magnetic shear, which indicates that corresponding instabilities are excited by pressure gradients. The time trace of the fluctuation spectrogram can be either a frequency staircase, with different modes excited at different times or multiple modes may simultaneously coexist. Theoretical analyses by the extended generalized fishbone-like dispersion relation (GFLDR-E) reveal that mode frequencies scale with ion diamagnetic drift frequency and ηi\eta_i, and they lie in KBM-AITG-BAE frequency ranges. AITG modes are most unstable when the magnetic shear is small in low pressure gradient regions. Numerical solutions of the AITG/KBM equation also illuminate why AITG modes can be unstable for weak shear and low pressure gradients. It is worth emphasizing that these instabilities may be linked to the internal transport barrier (ITB) and H-mode pedestal physics for weak magnetic shear.Comment: 9 pages, 7 figure

    Tunneling Anisotropic Magnetoresistance in Co/AlOx/Au Tunnel Junctions

    Full text link
    We observe spin-valve-like effects in nano-scaled thermally evaporated Co/AlOx/Au tunnel junctions. The tunneling magnetoresistance is anisotropic and depends on the relative orientation of the magnetization direction of the Co electrode with respect to the current direction. We attribute this effect to a two-step magnetization reversal and an anisotropic density of states resulting from spin-orbit interaction. The results of this study points to future applications of novel spintronics devices involving only one ferromagnetic layer.Comment: 11 pages, 5 figures. Accpted for publishing on Nano Letters, 200

    A spinal neural circuitry for converting touch to itch sensation

    Get PDF
    Touch and itch sensations are crucial for evoking defensive and emotional responses, and light tactile touch may induce unpleasant itch sensations (mechanical itch or alloknesis). The neural substrate for touch-to-itch conversion in the spinal cord remains elusive. We report that spinal interneurons expressing Tachykinin 2-Cre (Tac2Cre) receive direct A\u3b2 low threshold mechanoreceptor (LTMR) input and form monosynaptic connections with GRPR neurons. Ablation or inhibition markedly reduces mechanical but not acute chemical itch nor noxious touch information. Chemogenetic inhibition of Tac2Cre neurons also displays pronounced deficit in chronic dry skin itch, a type of chemical itch in mice. Consistently, ablation of gastrin-releasing peptide receptor (GRPR) neurons, which are essential for transmitting chemical itch, also abolishes mechanical itch. Together, these results suggest that innocuous touch and chemical itch information converge on GRPR neurons and thus map an exquisite spinal circuitry hard-wired for converting innocuous touch to irritating itch
    corecore