24,020 research outputs found

    The Unusual Spectral Energy Distribution of a Galaxy Previously Reported to be at Redshift 6.68

    Get PDF
    Observations of distant galaxies are important both for understanding how galaxies form and for probing the physical conditions of the universe at the earliest epochs. It is, however, extremely difficult to identify galaxies at redshift z>5, because these galaxies are faint and exhibit few spectral features. In a previous work, we presented observations that supported the identification of a galaxy at redshift z = 6.68 in a deep STIS field. Here we present new ground-based photometry of the galaxy. We find that the galaxy exhibits moderate detections of flux in the optical B and V images that are inconsistent with the expected absence of flux at wavelength shortward of the redshifted Lyman-alpha emission line of a galaxy at redshift z>5. In addition, the new broad-band imaging data not only show flux measurements of this galaxy that are incompatible with the previous STIS measurement, but also suggest a peculiar spectral energy distribution that cannot be fit with any galaxy spectral template at any redshift. We therefore conclude that the redshift identification of this galaxy remains undetermined.Comment: 9 pages, 2 figures; To appear in Nature (30 November 2000

    Approximating Weighted Duo-Preservation in Comparative Genomics

    Full text link
    Motivated by comparative genomics, Chen et al. [9] introduced the Maximum Duo-preservation String Mapping (MDSM) problem in which we are given two strings s1s_1 and s2s_2 from the same alphabet and the goal is to find a mapping π\pi between them so as to maximize the number of duos preserved. A duo is any two consecutive characters in a string and it is preserved in the mapping if its two consecutive characters in s1s_1 are mapped to same two consecutive characters in s2s_2. The MDSM problem is known to be NP-hard and there are approximation algorithms for this problem [3, 5, 13], but all of them consider only the "unweighted" version of the problem in the sense that a duo from s1s_1 is preserved by mapping to any same duo in s2s_2 regardless of their positions in the respective strings. However, it is well-desired in comparative genomics to find mappings that consider preserving duos that are "closer" to each other under some distance measure [19]. In this paper, we introduce a generalized version of the problem, called the Maximum-Weight Duo-preservation String Mapping (MWDSM) problem that captures both duos-preservation and duos-distance measures in the sense that mapping a duo from s1s_1 to each preserved duo in s2s_2 has a weight, indicating the "closeness" of the two duos. The objective of the MWDSM problem is to find a mapping so as to maximize the total weight of preserved duos. In this paper, we give a polynomial-time 6-approximation algorithm for this problem.Comment: Appeared in proceedings of the 23rd International Computing and Combinatorics Conference (COCOON 2017

    A note on Makeev's conjectures

    Full text link
    A counterexample is given for the Knaster-like conjecture of Makeev for functions on S2S^2. Some particular cases of another conjecture of Makeev, on inscribing a quadrangle into a smooth simple closed curve, are solved positively

    Possible egg masses from amphibians, gastropods, and insects in mid-Cretaceous Burmese amber

    Get PDF
    The eggs of fish, amphibians, and many invertebrates are soft, delicate structures that are only rarely preserved in the fossil record. Here we report egg masses preserved as inclusions in mid-Cretaceous amber deposits of Myanmar. Of five specimens recovered, three of the egg masses probably pertain to insects, but the other two appear different. One mass is composed of relatively stiff eggs that retain their shape throughout the mass and may be linked by mucoid strands. This morphology resembles that of some terrestrial molluscs. The second mass is composed of softer eggs that have compressed one another so that their shapes are strongly distorted within the mass. These eggs most closely resemble those of amphibians. Given the forest environment reconstructed for the amber locality, the eggs were presumably attached on or close to the resin producing tree

    Towards a design process for computer-aided biomimetics

    Get PDF
    Computer-Aided Biomimetics (CAB) tools aim to support the integration of relevant biological knowledge into biomimetic problem-solving processes. Specific steps of biomimetic processes that require support include the identification, selection and abstraction of relevant biological analogies. Existing CAB tools usually aim to support these steps by describing biological systems in terms of functions, although engineering functions do not map naturally to biological functions. Consequentially, the resulting static, functional view provides an incomplete understanding of biological processes, which are dynamic, cyclic and self-organizing. This paper proposes an alternative approach that revolves around the concept of trade-offs. The aim is to include the biological context, such as environmental characteristics, that may provide information crucial to the transfer of biological information to an engineering application. The proposed design process is exemplified by an illustrative case study

    FEM prediction of welding residual stresses in fibre laser welded AA 2024-T3 and comparison with experimental measurement

    Get PDF
    Welding generates a considerable amount of residual stresses which affect the structural integrity of welded components. It is often assumed that the magnitude of residual stresses around the welded joint is as high as the yield stress of the material. In this investigation, such assumption was found to be overly conservative and failed to accurately represent the distribution of residual stresses in fibre laser-welded aluminium alloy 2024-T3 sheets. Welding simulation based on the finite element method was used to reliably determine the distribution and magnitude of transient residual stress fields and distortions in thin sheets welded using three different sets of welding parameters. The accuracy of the finite element models was checked by calibrating with experimentally measured weld pool geometries and temperature field prior to conducting parametric studies. X-ray and neutron diffraction measurements were performed on the surface and in the bulk of the welded components, respectively, and compared with numerical results. The influence of weld metal softening, welding parameters and restraints on residual stresses and distortion were investigated systematically by numerically simulating ideal conditions which eliminate the practical limitations of conducting experimental studies, for process optimization as well as evaluation of in-service structure integrity and failure modes of the welded sheets

    Should We Learn Probabilistic Models for Model Checking? A New Approach and An Empirical Study

    Get PDF
    Many automated system analysis techniques (e.g., model checking, model-based testing) rely on first obtaining a model of the system under analysis. System modeling is often done manually, which is often considered as a hindrance to adopt model-based system analysis and development techniques. To overcome this problem, researchers have proposed to automatically "learn" models based on sample system executions and shown that the learned models can be useful sometimes. There are however many questions to be answered. For instance, how much shall we generalize from the observed samples and how fast would learning converge? Or, would the analysis result based on the learned model be more accurate than the estimation we could have obtained by sampling many system executions within the same amount of time? In this work, we investigate existing algorithms for learning probabilistic models for model checking, propose an evolution-based approach for better controlling the degree of generalization and conduct an empirical study in order to answer the questions. One of our findings is that the effectiveness of learning may sometimes be limited.Comment: 15 pages, plus 2 reference pages, accepted by FASE 2017 in ETAP
    • …
    corecore