37,917 research outputs found

    Cycle symmetry, limit theorems, and fluctuation theorems for diffusion processes on the circle

    Full text link
    Cyclic structure and dynamics are of great interest in both the fields of stochastic processes and nonequilibrium statistical physics. In this paper, we find a new symmetry of the Brownian motion named as the quasi-time-reversal invariance. It turns out that such an invariance of the Brownian motion is the key to prove the cycle symmetry for diffusion processes on the circle, which says that the distributions of the forming times of the forward and backward cycles, given that the corresponding cycle is formed earlier than the other, are exactly the same. With the aid of the cycle symmetry, we prove the strong law of large numbers, functional central limit theorem, and large deviation principle for the sample circulations and net circulations of diffusion processes on the circle. The cycle symmetry is further applied to obtain various types of fluctuation theorems for the sample circulations, net circulation, and entropy production rate.Comment: 28 page

    Constraints on the Brans-Dicke gravity theory with the Planck data

    Full text link
    Based on the new cosmic CMB temperature data from the Planck satellite, the 9 year polarization data from the WMAP, the BAO distance ratio data from the SDSS and 6dF surveys, we place a new constraint on the Brans-Dicke theory. We adopt a parametrization \zeta=\ln(1+1/\omega}), where the general relativity (GR) limit corresponds to ζ=0\zeta = 0. We find no evidence of deviation from general relativity. At 95% probability, 0.00246<ζ<0.00567-0.00246 < \zeta < 0.00567, correspondingly, the region 407.0<ω<175.87-407.0 < \omega <175.87 is excluded. If we restrict ourselves to the ζ>0\zeta>0 (i.e. ω>0\omega >0) case, then the 95% probability interval is ζ181.65\zeta 181.65. We can also translate this result to a constraint on the variation of gravitational constant, and find the variation rate today as G˙=1.422.27+2.48×1013\dot{G}=-1.42^{+2.48}_{-2.27} \times 10^{-13} yr1^{-1} (1σ1\sigma error bar), the integrated change since the epoch of recombination is δG/G=0.01040.0067+0.0186\delta G/G = 0.0104^{+0.0186}_{-0.0067} (1σ1\sigma error bar). These limits on the variation of gravitational constant are comparable with the precision of solar system experiments.Comment: 7 pages, 5 figures, 2 table

    Reveal flocking of birds flying in fog by machine learning

    Full text link
    We study the first-order flocking transition of birds flying in low-visibility conditions by employing three different representative types of neural network (NN) based machine learning architectures that are trained via either an unsupervised learning approach called "learning by confusion" or a widely used supervised learning approach. We find that after the training via either the unsupervised learning approach or the supervised learning one, all of these three different representative types of NNs, namely, the fully-connected NN, the convolutional NN, and the residual NN, are able to successfully identify the first-order flocking transition point of this nonequilibrium many-body system. This indicates that NN based machine learning can be employed as a promising generic tool to investigate rich physics in scenarios associated to first-order phase transitions and nonequilibrium many-body systems.Comment: 7 pages, 3 figure

    Electric field control of multiferroic domain wall motion

    Full text link
    The dynamics of a multiferroic domain wall in which an electric field can couple to the magnetization via inhomogeneous magnetoelectric interaction is investigated by the collective-coordinate framework. We show how the electric field is capable of delaying the onset of the Walker breakdown of the domain wall motion, leading to a significant enhancement of the maximum wall velocity. Moreover, we show that in the stationary regime the chirality of the domain wall can be efficiently reversed when the electric field is applied along the direction of the magnetic field. These characteristics suggest that the multiferroic domain wall may provide a new prospective means to design faster and low-power-consumption domain wall devices.Comment: 6 pages, 4 figure

    On Optimality of Myopic Sensing Policy with Imperfect Sensing in Multi-channel Opportunistic Access

    Full text link
    We consider the channel access problem under imperfect sensing of channel state in a multi-channel opportunistic communication system, where the state of each channel evolves as an independent and identically distributed Markov process. The considered problem can be cast into a restless multi-armed bandit (RMAB) problem that is of fundamental importance in decision theory. It is well-known that solving the RMAB problem is PSPACE-hard, with the optimal policy usually intractable due to the exponential computation complexity. A natural alternative is to consider the easily implementable myopic policy that maximizes the immediate reward but ignores the impact of the current strategy on the future reward. In this paper, we perform an analytical study on the optimality of the myopic policy under imperfect sensing for the considered RMAB problem. Specifically, for a family of generic and practically important utility functions, we establish the closed-form conditions under which the myopic policy is guaranteed to be optimal even under imperfect sensing. Despite our focus on the opportunistic channel access, the obtained results are generic in nature and are widely applicable in a wide range of engineering domains.Comment: 21 pages regular pape
    corecore