843 research outputs found

    Bacterial Leaf Nodule Symbiosis in Flowering Plants

    Get PDF
    Bacterial leaf nodule symbiosis within angiosperms is a less known phenomenon compared to the well-documented legume root-Rhizobium symbiosis and certainly deserved much more scientific attention. Leaf nodules associated with bacteria was first recognized in Pavetta (Rubiaceae) in early twentieth century. Further survey added other members of Rubiaceae, Primulaceae, Dioscoreaceae, and Styracaceae to the short list of plants with specialized bacteria-containing structure in aerial part of plants. The actual role of the bacteria has been questioned by several researchers, mostly due to the problems associated with the identities of these unculturable bacteria. Many progresses have been achieved provided with molecular phylogenetic analysis and also genomic data of the bacteria. Recent evidence from genomic sequences showed the symbiotic bacteria may serve as a defense role in Primulaceae and Rubiaceae, and may increase stress tolerance in Dioscoreaceae. In this article, we reviewed the current knowledge of the bacterial leaf nodule symbiosis in angiosperm. Future research and applications were also discussed

    Cryogenic treatment of music wire

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Stepwise Increases in Left Ventricular Mass Index and Decreases in Left Ventricular Ejection Fraction Correspond with the Stages of Chronic Kidney Disease in Diabetes Patients

    Get PDF
    Aims. Patients with diabetic nephropathy are reported to have a high prevalence of left ventricular structural and functional abnormalities. This study was designed to assess the determinants of left ventricular mass index (LVMI) and left ventricular ejection fraction (LVEF) in diabetic patients at various stages of chronic kidney disease (CKD). Methods. This cross-sectional study enrolled 285 diabetic patients with CKD stages 3 to 5 from our outpatient department of internal medicine. Clinical and echocardiographic parameters were compared and analyzed. Results. We found a significant stepwise increase in LVMI (P < 0.001), LVH (P < 0.001), and LVEF <55% (P = 0.013) and a stepwise decrease in LVEF (P = 0.038) corresponding to advance in CKD stages. Conclusions. Our findings suggest that increases in LVMI and decreases in LVEF coincide with advances in CKD stages in patients with diabetes

    Formation polarity dependent improved resistive switching memory characteristics using nanoscale (1.3 nm) core-shell IrOx nano-dots

    Get PDF
    Improved resistive switching memory characteristics by controlling the formation polarity in an IrOx/Al2O3/IrOx-ND/Al2O3/WOx/W structure have been investigated. High density of 1 × 1013/cm2 and small size of 1.3 nm in diameter of the IrOx nano-dots (NDs) have been observed by high-resolution transmission electron microscopy. The IrOx-NDs, Al2O3, and WOx layers are confirmed by X-ray photo-electron spectroscopy. Capacitance-voltage hysteresis characteristics show higher charge-trapping density in the IrOx-ND memory as compared to the pure Al2O3 devices. This suggests that the IrOx-ND device has more defect sites than that of the pure Al2O3 devices. Stable resistive switching characteristics under positive formation polarity on the IrOx electrode are observed, and the conducting filament is controlled by oxygen ion migration toward the Al2O3/IrOx top electrode interface. The switching mechanism is explained schematically based on our resistive switching parameters. The resistive switching random access memory (ReRAM) devices under positive formation polarity have an applicable resistance ratio of > 10 after extrapolation of 10 years data retention at 85°C and a long read endurance of 105 cycles. A large memory size of > 60 Tbit/sq in. can be realized in future for ReRAM device application. This study is not only important for improving the resistive switching memory performance but also help design other nanoscale high-density nonvolatile memory in future

    The Case ∣ A woman with bilateral flank pain

    Get PDF

    Less Invasive Mitral Valve Surgery via Right Minithoracotomy

    Get PDF
    Background/PurposeCurrent trends in cardiac surgical intervention are moving toward less invasiveness, with smaller wound or sternum-sparing, less pump time or off-pump, and beating rather than arrested heart. Data on the efficacy and safety of these newer less invasive techniques, as well as their cosmetic results, are limited. This study analyzed the results of a sternum-sparing mitral valve operation.MethodsThirty patients with mitral valve diseases, including 20 who underwent mitral valve repair and 10 mitral valve replacement, were enrolled. Cardiopulmonary bypass was established via femoral cannu-lation, and blood cardioplegic arrest was induced by using a percutaneous, transthoracic cross-clamp. The main surgical wound was made over the lateral border of the right breast. Two additional small wounds were required for the transthoracic aortic clamp and the mitral retractor.ResultsThere was no operative mortality, and all patients had an uneventful recovery. Two patients underwent redo mitral surgery. Nine associated procedures were performed including tricuspid valve annulo-plasty in six patients, tricuspid valve replacement in two patients and atrial septal defect repair in one patient. The length of the main wound was between 5.8 and 7.8 cm (mean, 7.1 cm). The mean cardiopul-monary bypass time and cross-clamp time were 91.1 and 43.7 minutes, respectively. Although the length of stay was not significantly reduced compared with traditional median sternotomy, all patients had satisfactory results with good cosmesis.ConclusionSternum-sparing mitral valve surgery appears to be a safe and effective alternative to conventional mitral valve surgery; it is less invasive and provides superior cosmetic results for patients

    Hypothermic manipulation of bone cement can extend the handling time during vertebroplasty

    Get PDF
    BACKGROUND: Polymethylmethacrylate (PMMA) is commonly used for clinical applications. However, the short handling time increases the probability of a surgeon missing the crucial period in which the cement maintains its ideal viscosity for a successful injection. The aim of this article was to illustrate the effects a reduction in temperature would have on the cement handling time during percutaneous vertebroplasty. METHODS: The injectability of bone cement was assessed using a cement compressor. By twisting the compressor, the piston transmits its axial load to the plunger, which then pumps the bone cement out. The experiments were categorized based on the different types of hypothermic manipulation that were used. In group I (room temperature, sham group), the syringes were kept at 22°C after mixing the bone cement. In group 2 (precooling the bone cement and the container), the PMMA powder and liquid, as well as the beaker, spatula, and syringe, were stored in the refrigerator (4°C) overnight before mixing. In group 3 (ice bath cooling), the syringes were immediately submerged in ice water after mixing the bone cement at room temperature. RESULTS: The average liquid time, paste time, and handling time were 5.1 ± 0.7, 3.4 ± 0.3, and 8.5 ± 0.8 min, respectively, for group 1; 9.4 ± 1.1, 5.8 ± 0.5, and 15.2 ± 1.2 min, respectively, for group 2; and 83.8 ± 5.2, 28.8 ± 6.9, and 112.5 ± 11.3 min, respectively, for group 3. The liquid and paste times could be increased through different cooling methods. In addition, the liquid time (i.e. waiting time) for ice bath cooling was longer than for that of the precooling method (p < 0.05). CONCLUSIONS: Both precooling (i.e. lowering the initial temperature) and ice bath cooling (i.e. lowering the surrounding temperature) can effectively slow polymerization. Precooling is easy for clinical applications, while ice bath cooling might be more suitable for multiple-level vertebroplasty. Clinicians can take advantage of the improved injectability without any increased cost
    corecore