8,383 research outputs found

    Constraining properties of neutron stars with heavy-ion reactions in terrestrial laboratories

    Full text link
    Heavy-ion reactions provide a unique means to investigate the equation of state (EOS) of neutron-rich nuclear matter, especially the density dependence of the nuclear symmetry energy Esym(ρ)E_{sym}(\rho). The latter plays an important role in understanding many key issues in both nuclear physics and astrophysics. Recent analyses of heavy-ion reactions have already put a stringent constraint on the Esym(ρ)E_{sym}(\rho) around the saturation density. This subsequently allowed us to constrain significantly the radii and cooling mechanisms of neutron stars as well as the possible changing rate of the gravitational constant G.Comment: 6 pages. Talk given at the Nuclear Physics in Astrophysics III, Dresden, Germany, March 26-31, 2007. To appear in a special volume of J. of Phys.

    Partonic effects on anisotropic flows at RHIC

    Full text link
    We report recent results from a multiphase transport (AMPT) model on the azimuthal anisotropies of particle momentum distributions in heavy ion collisions at the Relativistic Heavy Ion Collider. These include higher-order anisotropic flows and their scaling, the rapidity dependence of anisotropic flows, and the elliptic flow of charm quarks.Comment: 7 pages, 5 figures, talk given at "Hot Quarks 2004", July 18-24, 2004, Taos Valley, NM, US

    Effect of isovector-scalar meson on neutron star matter in strong magnetic fields

    Get PDF
    We study the effects of isovector-scalar meson δ\delta on the equation of state (EOS) of neutron star matter in strong magnetic fields. The EOS of neutron-star matter and nucleon effective masses are calculated in the framework of Lagrangian field theory, which is solved within the mean-field approximation. From the numerical results one can find that the δ\delta-field leads to a remarkable splitting of proton and neutron effective masses. The strength of δ\delta-field decreases with the increasing of the magnetic field and is little at ultrastrong field. The proton effective mass is highly influenced by magnetic fields, while the effect of magnetic fields on the neutron effective mass is negligible. The EOS turns out to be stiffer at B<1015B < 10^{15}G but becomes softer at stronger magnetic field after including the δ\delta-field. The AMM terms can affect the system merely at ultrastrong magnetic field(B>1019B > 10^{19}G). In the range of 101510^{15} G -- 101810^{18} G the properties of neutron-star matter are found to be similar with those without magnetic fields.Comment: 26 pages, 9 figure

    Equation of State of Nuclear Matter at high baryon density

    Get PDF
    A central issue in the theory of astrophysical compact objects and heavy ion reactions at intermediate and relativistic energies is the Nuclear Equation of State (EoS). On one hand, the large and expanding set of experimental and observational data is expected to constrain the behaviour of the nuclear EoS, especially at density above saturation, where it is directly linked to fundamental processes which can occur in dense matter. On the other hand, theoretical predictions for the EoS at high density can be challenged by the phenomenological findings. In this topical review paper we present the many-body theory of nuclear matter as developed along different years and with different methods. Only nucleonic degrees of freedom are considered. We compare the different methods at formal level, as well as the final EoS calculated within each one of the considered many-body schemes. The outcome of this analysis should help in restricting the uncertainty of the theoretical predictions for the nuclear EoS.Comment: 51 pages, to appear in J. Phys. G as Topical Revie

    Imprints of Nuclear Symmetry Energy on Properties of Neutron Stars

    Full text link
    Significant progress has been made in recent years in constraining the density dependence of nuclear symmetry energy using terrestrial nuclear laboratory data. Around and below the nuclear matter saturation density, the experimental constraints start to merge in a relatively narrow region. At supra-saturation densities, there are, however, still large uncertainties. After summarizing the latest experimental constraints on the density dependence of nuclear symmetry energy, we highlight a few recent studies examining imprints of nuclear symmetry energy on the binding energy, energy release during hadron-quark phase transitions as well as the ww-mode frequency and damping time of gravitational wave emission of neutron stars.Comment: 10 pages. Invited talk given in the Nuclear Astrophysics session of INPC2010, July 4-9, 2010, Vancouver, Canada; Journal of Physics: Conference Series (2011

    Pressure effects on the electron-doped high Tc superconductor BaFe(2-x)Co(x)As(2)

    Full text link
    Application of pressures or electron-doping through Co substitution into Fe sites transforms the itinerant antiferromagnet BaFe(2)As(2) into a superconductor with the Tc exceeding 20K. We carried out systematic transport measurements of BaFe(2-x)Co(x)As(2) superconductors in pressures up to 2.5GPa, and elucidate the interplay between the effects of electron-doping and pressures. For the underdoped sample with nominal composition x = 0.08, application of pressure strongly suppresses a magnetic instability while enhancing Tc by nearly a factor of two from 11K to 21K. In contrast, the optimally doped x=0.20 sample shows very little enhancement of Tc=22K under applied pressure. Our results strongly suggest that the proximity to a magnetic instability is the key to the mechanism of superconductivity in iron-pnictides.Comment: 5 figure

    Distorted magnetic orders and electronic structures of tetragonal FeSe from first-principles

    Full text link
    We use the state-of-the-arts density-functional-theory method to study various magnetic orders and their effects on the electronic structures of the FeSe. Our calculated results show that, for the spins of the single Fe layer, the striped antiferromagnetic orders with distortion are more favorable in total energy than the checkerboard antiferromagnetic orders with tetragonal symmetry, which is consistent with known experimental data, and the inter-layer magnetic interaction is very weak. We investigate the electronic structures and magnetic property of the distorted phases. We also present our calculated spin coupling constants and discuss the reduction of the Fe magnetic moment by quantum many-body effects. These results are useful to understand the structural, magnetic, and electronic properties of FeSe, and may have some helpful implications to other FeAs-based materials

    Constraints on Astro-unparticle Physics from SN 1987A

    Full text link
    SN 1987A observations have been used to place constraints on the interactions between standard model particles and unparticles. In this study we calculate the energy loss from the supernovae core through scalar, pseudo scalar, vector, pseudo vector unparticle emission from nuclear bremsstrahlung for degenerate nuclear matter interacting through one pion exchange. In order to examine the constraints on dU=1d_{\cal U}=1 we considered the emission of scalar, pseudo scalar, vector, pseudo vector and tensor through the pair annihilation process e+eUγe^+e^-\to {\cal U} \gamma . In addition we have re-examined other pair annihilation processes. The most stringent bounds on the dimensionless coupling constants for dU=1d_{\cal U} =1 and ΛU=mZ\Lambda_{\cal U}= m_Z are obtained from nuclear bremsstrahlung process for the pseudo scalar and pseudo-vector couplings λ0,1P4×1011\bigl|\lambda^{\cal P}_{0,1}\bigr|\leq 4\times 10^{-11} and for tensor interaction, the best limit on dimensionless coupling is obtained from e+eUγe^+ e^-\to {\cal U} \gamma and we get λT6×106\bigl|\lambda^{\cal T}\bigr| \leq 6\times 10^{-6}.Comment: 12 pages, 2 postscript figure

    Rare B decays and Tevatron top-pair asymmetry

    Full text link
    The recent Tevatron result on the top quark forward-backward asymmetry, which deviates from its standard model prediction by 3.4σ\sigma, has prompted many authors to build new models to account for this anomaly. Among the various proposals, we find that those mechanisms which produce ttˉt\bar t via tt- or uu-channel can have a strong correlation to the rare B decays. We demonstrate this link by studying a model with a new charged gauge boson, WW'. In terms of the current measurements on BπKB\to \pi K decays, we conclude that the branching ratio for BπKˉ0B^-\to \pi^- \bar K^0 is affected most by the new effects. Furthermore, using the world average branching ratio for the exclusive B decays at 2σ2\sigma level, we discuss the allowed values for the new parameters. Finally, we point out that the influence of the new physics effects on the direct CP asymmetry in B decays is insignificant.Comment: 15 page, 6 figures, typos corrected and references added, final version to appear journa
    corecore