18,920 research outputs found
Elucidating two-phase transport in a polymer electrolyte fuel cell, Part 1: Characterizing flow regimes with a dimensionless group
This paper explores the through-/in-plane characteristics of water transport in the cathode gas diffusion layer (GDL) of a polymer electrolyte fuel cell (PEFC). Theoretical analysis is performed on the non-isothermal two-phase flow under flow channels. A dimensionless group Da (Damkohler number for PEFC operation), defined as the ratio of water generation rate to water vapor-phase removal rate, is formulated to characterize the flow regimes in a PEFC. This group, lumping geometrical parameters and physical properties, compares the water vapor-phase removal capability (via water diffusion and holding capacity) with the rate of water production by the oxygen reduction reaction. We find that this dimensionless group can be used to characterize the non-isothermal, two-phase phenomena: when Da→0, the fuel cell is subjected to single-phase operation; while as Da→ we have full two-phase operation. A more precise expression is explored for the dimensionless group at the channel central line, i.e. Da0: when Da0>1 the entire cathode GDL-CL (catalyst layer) interface is in two-phase region, whereas part of the interface is free of liquid water for Da0<1. The latter scenario is the concept that this paper proposes for improving fuel cell water management: the consequent co-occurrence of single- and two-phase flows in the in-plane direction at Da0<1 is beneficial to avoid severe dryout and flooding. A two-phase transport model, describing the water and heat transport on the PEFC cathode side, is employed to perform a two-dimensional numerical study. Detailed liquid and temperature distributions are displayed. Simulation predictions are in reasonably good agreement with the dimensionless-group analysis. © 2011 Elsevier Ltd
Through-plane water distribution in a polymer electrolyte fuel cell: Comparison of numerical prediction with neutron radiography data
A multidimensional mathematical model is presented for simulating the coupled phenomena of gaseous fuel/reactant flows, species (including liquid water) transport, heat transfer, hydrogen oxidation, and oxygen reduction reactions in a polymer electrolyte fuel cell (PEFC). The present work focuses on elucidating water distribution in the through-plane direction, in particular across the membrane electrode assembly (MEA) and gas diffusion layer (GDL). Two-dimensional model predictions are computed numerically and compared with available experimental data from neutron radiography or imaging. Using the same set of model parameters, reasonably good agreements are obtained quantitatively between the computed water profile in the MEA-GDL component and the neutron-imaging data reported by two separate research groups, and qualitatively between model prediction and the data from another (third) group. Case-study simulations are carried out for PEFC operation at various temperatures, relative humidities, and current densities. It is found that liquid-water content is lower at higher cell temperatures due to greater water evaporation and stronger water diffusion in the vapor phase, as expected. Without strong water diffusion in the vapor phase, the liquid-water profiles are found to increase with current density in the cathode GDL but indicate a complex trend in the anode. Effect of varying GDL thermal conductivity on water distribution is also examined. © 2010 The Electrochemical Society
Hydrostatic pressure induced Dirac semimetal in black phosphorus
Motivated by recent experimental observation of an hydrostatic pressure
induced transition from semiconductor to semimetal in black phosphorus [Chen et
al. in arXiv:1504.00125], we present the first principles calculation on the
pressure effect of the electronic structures of black phosphorus. It is found
that the band crossover and reversal at the Z point occur around the critical
pressure Pc1=1.23 Gpa, and the band inversion evolves into 4 twofold-degenerate
Dirac cones around the Z point, suggesting a 3D Dirac semimetal. With further
increasing pressure the Dirac cones in the Gamma-Z line move toward the Gamma
point and evolve into two hole-type Fermi pockets, and those in the Z-M lines
move toward the M point and evolve into 2 hole-type Fermi pockets up to P=4.0
Gpa. It demonstrates clearly that the Lifshitz transition occurs at
from semiconductor to 3D Dirac semimetal protected by the nonsymmorphic space
symmetry of bulk. This suggests the bright perspective of black phosphorus for
optoelectronic and electronic devices due to its easy modulation by pressure.Comment: 7 pages, 9 figures, and 2 table
Constraining Proton Lifetime in SO(10) with Stabilized Doublet-Triplet Splitting
We present a class of realistic unified models based on supersymmetric SO(10)
wherein issues related to natural doublet-triplet (DT) splitting are fully
resolved. Using a minimal set of low dimensional Higgs fields which includes a
single adjoint, we show that the Dimopoulos--Wilzcek mechanism for DT splitting
can be made stable in the presence of all higher order operators without having
pseudo-Goldstone bosons and flat directions. The \mu term of order TeV is found
to be naturally induced. A Z_2-assisted anomalous U(1)_A gauge symmetry plays a
crucial role in achieving these results. The threshold corrections to
alpha_3(M_Z), somewhat surprisingly, are found to be controlled by only a few
effective parameters. This leads to a very predictive scenario for proton
decay. As a novel feature, we find an interesting correlation between the d=6
(p\to e^+\pi^0) and d=5 (p\to \nu-bar K+) decay amplitudes which allows us to
derive a constrained upper limit on the inverse rate of the e^+\pi^0 mode. Our
results show that both modes should be observed with an improvement in the
current sensitivity by about a factor of five to ten.Comment: 21 pages LaTeX, 2 figures, Few explanatory sentences and three new
references added, minor typos corrected
Ultrasonic extraction of flavonoids and phenolics from loquat (Eriobotrya japonica Lindl.) flowers
Ethanol was used to extract flavonoids and phenolics from loquat (Eriobotrya japonica Lindl. cv. Ruantiaobaisha) flowers with ultrasonic pharmaceutical managing machine. Single-factor and orthogonal experiment were used to investigate the optimum extraction condition. The results showed that, the combination of 30°C, 80 min, 60% ethanol and 1:40 material ratio was optimum extraction condition with the highest yields of flavonoids and phenolics at 47 kHz/500 W. Under the optimum extraction condition, two consecutive extractions was enough, the extraction rates of flavonoids and phenolics were all more than 90%, with the contents of 10.59 and 102.02 mg/g dry weight, respectively.Key words: Eriobotrya japonica, flower, flavonoids, phenolics, ultrasonic extraction
Optically and electrically tunable graphene quantum dot–polyaniline composite films
Graphene quantum dot-polyaniline (PANI-GQD) composite films were synthesized by a chemical oxidation polymerization process. The optical properties of the PANI-GQD composite were studied by varying the mole concentration of PANI and the size of the GQDs. The Au/PANI-GQDs/ITO sandwich device was fabricated in order to investigate the transport properties of the composite. A stable hysteresis loop was observed in response to the applied voltage. By varying the PANI content and size of the GQDs, the area within the hysteresis loop and electrical conductance behavior of the device can be tuned in a controlled manner. Both the tunable luminescence and electrical hysteresis behavior are attributed to surface states of the GQDs. The PANI-GQD composite films are expected to find application in photonic devices.Department of Applied Physic
Extract of Zanthoxylum bungeanum maxim seed oil reduces hyperlipidemia in hamsters fed high-fat diet via activation of peroxisome proliferator-activated receptor γ
Purpose: To investigate the anti-hyperlipidaemic effect of extract of Zanthoxylum bungeanum Maxim. seed oil (EZSO) on high-fat diet (HFD)-induced hyperlipidemic hamsters.Methods: Following feeding with HFD for 30 days, hyperlipidemic hamsters were intragastrically treated with EZSO for 60 days. Serum levels of triglyceride (TG), total cholesterol (TC), low-density-lipoproteincholesterol (LDL-C), nitric oxide (NO) and malondialdehyde (MDA) were analyzed. Protein expression and location of peroxisome proliferator-activated receptor γ (PPARγ) in liver were determined by Western blot and immunohistochemical assays, respectively.Results: EZSO at 5 and 10 g/kg significantly reduced levels of TG by 26 and 23 % (p < 0.05), TC by 19 % (p < 0.01) and 13 % (p < 0.01), LDL-C by 18 % (p < 0.05) and 21 % (p < 0.01), NO by 15 % (p < 0.01) and 31 % (p < 0.01), and MDA by 16 % (p < 0.05) and 30 % (p < 0.01), respectively, in serum of hyperlipidemic hamsters. However, EZSO did not show significant effect on HDL-C level in serum. Furthermore, EZSO at 5 and 10 g/kg markedly promoted protein expression of PPARγ by 71 % (p < 0.05) and 102 % (p < 0.01) in liver tissue of hyperlipidemic hamsters. EZSO also notably increased the content of PPARγ protein in the nucleus of liver cells of hyperlipidemic hamsters.Conclusion: These findings suggest that EZSO can reduce hyperlipidemia and improve oxidative stress in hyperlipidemic hamsters through activation of PPARγ, and that EZSO is a promising novel hypolipidemic health product.Keywords: Zanthoxylum bungeanum, Peroxisome proliferator activated receptor γ, Hyperlipidemia, Hamster, High-fat die
Genetic steps to organ laterality in zebrafish.
All internal organs are asymmetric along the left-right axis. Here we report a genetic screen to discover mutations which perturb organ laterality. Our particular focus is upon whether, and how, organs are linked to each other as they achieve their laterally asymmetric positions. We generated mutations by ENU mutagenesis and examined F3 progeny using a cocktail of probes that reveal early primordia of heart, gut, liver and pancreas. From the 750 genomes examined, we isolated seven recessive mutations which affect the earliest left-right positioning of one or all of the organs. None of these mutations caused discernable defects elsewhere in the embryo at the stages examined. This is in contrast to those mutations we reported previously (Chen et al., 1997) which, along with left-right abnormalities, cause marked perturbation in gastrulation, body form or midline structures. We find that the mutations can be classified on the basis of whether they perturb relationships among organ laterality. In Class 1 mutations, none of the organs manifest any left-right asymmetry. The heart does not jog to the left and normally leftpredominant BMP4 in the early heart tube remains symmetric. The gut tends to remain midline. There frequently is a remarkable bilateral duplication of liver and pancreas. Embryos with Class 2 mutations have organotypic asymmetry but, in any given embryo, organ positions can be normal, reversed or randomized. Class 3 reveals a hitherto unsuspected gene that selectively affects laterality of heart. We find that visceral organ positions are predicted by the direction of the preceding cardiac jog. We interpret this as suggesting that normally there is linkage between cardiac and visceral organ laterality. Class 1 mutations, we suggest, effectively remove the global laterality signals, with the consequence that organ positions are effectively symmetrical. Embryos with Class 2 mutations do manifest linkage among organs, but it may be reversed, suggesting that the global signals may be present but incorrectly orientated in some of the embryos. That laterality decisions of organs may be independently perturbed, as in the Class 3 mutation, indicates that there are distinctive pathways for reception and organotypic interpretation of the global signals
Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2
The linear dispersion relation in graphene[1,2] gives rise to a surprising
prediction: the resistivity due to isotropic scatterers (e.g. white-noise
disorder[3] or phonons[4-8]) is independent of carrier density n. Here we show
that acoustic phonon scattering[4-6] is indeed independent of n, and places an
intrinsic limit on the resistivity in graphene of only 30 Ohm at room
temperature (RT). At a technologically-relevant carrier density of 10^12 cm^-2,
the mean free path for electron-acoustic phonon scattering is >2 microns, and
the intrinsic mobility limit is 2x10^5 cm^2/Vs, exceeding the highest known
inorganic semiconductor (InSb, ~7.7x10^4 cm^2/Vs[9]) and semiconducting carbon
nanotubes (~1x10^5 cm^2/Vs[10]). We also show that extrinsic scattering by
surface phonons of the SiO2 substrate[11,12] adds a strong temperature
dependent resistivity above ~200 K[8], limiting the RT mobility to ~4x10^4
cm^2/Vs, pointing out the importance of substrate choice for graphene
devices[13].Comment: 16 pages, 3 figure
Understanding the impact of convective ethanol humidity on the precipitation behaviour of dissolved lactose in a water droplet
Crystalline lactose particles, composed of agglomerated ultrafine crystallites, were produced using the antisolvent vapour precipitation technique. This technique exposes a single suspended aqueous lactose droplet to a convective stream laden with ethanol vapour. Manipulating simultaneous ethanol absorption and water evaporation from the droplet by adjusting the ethanol vapour humidity, led to various crystallite morphologies. Within the intermediate and high ranges of the ethanol humidity tested, higher humidity led to finer and more dendritic-like crystallites. Surprisingly, low ethanol humidity (20% ERH) led to a relatively high rate of ethanol concentration increment in the droplet but inadvertently exhibited a low nucleation potential. Thus, the crystallization potential of a lactose droplet under antisolvent vapour precipitation conditions will need to be evaluated in terms of the rate of ethanol concentration increment as well as the solute concentration-ethanol concentration history. These factors will be important in controlling or scaling up the antisolvent vapour precipitation technique
- …