993 research outputs found

    Black hole variability and the star formation-active galactic nucleus connection : do all star-forming galaxies host an active galactic nucleus?

    Get PDF
    We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN luminosities and the properties of AGN hosts, which has been interpreted to imply that there is no direct connection between AGN activity and star formation. However, AGNs may be expected to vary significantly on a wide range of timescales (from hours to Myr) that are far shorter than the typical timescale for star formation (gsim100 Myr). This variability can have important consequences for observed correlations. We present a simple model in which all star-forming galaxies host an AGN when averaged over ~100 Myr timescales, with long-term average AGN accretion rates that are perfectly correlated with the star formation rate (SFR). We show that reasonable prescriptions for AGN variability reproduce the observed weak correlations between SFR and L AGN in typical AGN host galaxies, as well as the general trends in the observed AGN luminosity functions, merger fractions, and measurements of the average AGN luminosity as a function of SFR. These results imply that there may be a tight connection between AGN activity and SFR over galaxy evolution timescales, and that the apparent similarities in rest-frame colors, merger rates, and clustering of AGNs compared to "inactive" galaxies may be due primarily to AGN variability. The results provide motivation for future deep, wide extragalactic surveys that can measure the distribution of AGN accretion rates as a function of SFR

    Coronal mass ejections as expanding force-free structures

    Full text link
    We mode Solar coronal mass ejections (CMEs) as expanding force-fee magnetic structures and find the self-similar dynamics of configurations with spatially constant \alpha, where {\bf J} =\alpha {\bf B}, in spherical and cylindrical geometries, expanding spheromaks and expanding Lundquist fields correspondingly. The field structures remain force-free, under the conventional non-relativistic assumption that the dynamical effects of the inductive electric fields can be neglected. While keeping the internal magnetic field structure of the stationary solutions, expansion leads to complicated internal velocities and rotation, induced by inductive electric field. The structures depends only on overall radius R(t) and rate of expansion \dot{R}(t) measured at a given moment, and thus are applicable to arbitrary expansion laws. In case of cylindrical Lundquist fields, the flux conservation requires that both axial and radial expansion proceed with equal rates. In accordance with observations, the model predicts that the maximum magnetic field is reached before the spacecraft reaches the geometric center of a CME.Comment: 19 pages, 9 Figures, accepted by Solar Physic

    On the Three-dimensional Central Moment Lattice Boltzmann Method

    Full text link
    A three-dimensional (3D) lattice Boltzmann method based on central moments is derived. Two main elements are the local attractors in the collision term and the source terms representing the effect of external and/or self-consistent internal forces. For suitable choices of the orthogonal moment basis for the three-dimensional, twenty seven velocity (D3Q27), and, its subset, fifteen velocity (D3Q15) lattice models, attractors are expressed in terms of factorization of lower order moments as suggested in an earlier work; the corresponding source terms are specified to correctly influence lower order hydrodynamic fields, while avoiding aliasing effects for higher order moments. These are achieved by successively matching the corresponding continuous and discrete central moments at various orders, with the final expressions written in terms of raw moments via a transformation based on the binomial theorem. Furthermore, to alleviate the discrete effects with the source terms, they are treated to be temporally semi-implicit and second-order, with the implicitness subsequently removed by means of a transformation. As a result, the approach is frame-invariant by construction and its emergent dynamics describing fully 3D fluid motion in the presence of force fields is Galilean invariant. Numerical experiments for a set of benchmark problems demonstrate its accuracy.Comment: 55 pages, 8 figure

    Gating a Single Cell:A Label-Free and Real-Time Measurement Method for Cellular Progression

    Get PDF
    There is an ever-growing need for more advanced methods to study the response of cancer cells to new therapies. To determine cancer cells’ response from a cell-mortality perspective to various cancer therapies, we report a label-free and real time method to monitor the in situ response of individual HeLa cells using a single cell gated transistor (SCGT). As a cell undergoes apoptotic cell death, it experiences changes in morphology and ion concentrations. This change is well in line with the threshold voltage of the SCGT, which has been verified by correlating the data with the cell morphologies by scanning electron microscopy and the ion-concentration analysis by inductively-coupled plasma mass spectrometry (ICPMS). This SCGT could replace patch clamps to study single cell activity via direct measurement in real time. Importantly, this SCGT can be used to study the electrical response of a single cell to stimuli that leaves the membrane intact

    Dynamics in Colloidal Liquids near a Crossing of Glass- and Gel-Transition Lines

    Full text link
    Within the mode-coupling theory for ideal glass-transitions, the mean-squared displacement and the correlation function for density fluctuations are evaluated for a colloidal liquid of particles interacting with a square-well potential for states near the crossing of the line for transitions to a gel with the line for transitions to a glass. It is demonstrated how the dynamics is ruled by the interplay of the mechanisms of arrest due to hard-core repulsion and due to attraction-induced bond formation as well as by a nearby higher-order glass-transition singularity. Application of the universal relaxation laws for the slow dynamics near glass-transition singularities explains the qualitative features of the calculated time dependence of the mean-squared displacement, which are in accord with the findings obtained in molecular-dynamics simulation studies by Zaccarelli et. al [Phys. Rev. E 66, 041402 (2002)]. Correlation functions found by photon-correlation spectroscopy in a micellar system by Mallamace et. al [Phys. Rev. Lett. 84, 5431 2000)] can be interpreted qualitatively as a crossover from gel to glass dynamics.Comment: 13 pages, 12 figure

    Variation in Care of Inflammatory Bowel Diseases Patients in Crohn's and Colitis Foundation of America Partners: Role of Gastroenterologist Practice Setting in Disease Outcomes and Quality Process Measures

    Get PDF
    Background: As variation in care has previously been linked to quality, we aimed to describe variations in inflammatory bowel diseases care by gastroenterology (GI) practice setting. Methods: We performed a cross-sectional study within the Crohn's and Colitis Foundation of America Partners and used bivariate analyses to compare patient characteristics by GI practice setting (GI-academic [GIA], GI-private, or GI-other). Regression models were used to describe the effects of provider type on steroid use, disease activity, and the quality of life. Results: The study included 12,083 patients with inflammatory bowel diseases (7576 with Crohn's disease [CD] and 4507 with ulcerative colitis [UC]). Nearly 95% reported visiting a GI provider annually. Also, CD patients seen by GIA were younger, better educated, used less 5-aminosalicylate agents, and had higher biologic and immunomodulator use (P < 0.001 for all). On multivariate analysis of CD patients, GIA used less steroids when compared with GI-private (odds ratio, 0.84; 95% confidence interval, 0.67-1.06) or GI-other (odds ratio, 0.66; 95% confidence interval, 0.49-0.89). GIA patients were more likely to be in remission, have flu vaccine, and have better quality of life. UC patients seen by GIA were younger, had more hospitalizations, and previous surgery (P < 0.001 for all). No differences existed for steroid use, remission, flu vaccine, or quality of life for UC care on bivariate or multivariate analyses. Conclusions: Significant variations in care patterns and quality measures exist for CD across GI provider types, without similar variation in UC care. Interventions to reduce variations in care could improve the quality of care in CD

    Constraining Very Heavy Dark Matter Using Diffuse Backgrounds of Neutrinos and Cascaded Gamma Rays

    Full text link
    We consider multi-messenger constraints on very heavy dark matter (VHDM) from recent Fermi gamma-ray and IceCube neutrino observations of isotropic background radiation. Fermi data on the diffuse gamma-ray background (DGB) shows a possible unexplained feature at very high energies (VHE), which we have called the "VHE Excess" relative to expectations for an attenuated power law extrapolated from lower energies. We show that VHDM could explain this excess, and that neutrino observations will be an important tool for testing this scenario. More conservatively, we derive new constraints on the properties of VHDM for masses of 10^3-10^10 GeV. These generic bounds follow from cosmic energy budget constraints for gamma rays and neutrinos that we developed elsewhere, based on detailed calculations of cosmic electromagnetic cascades and also neutrino detection rates. We show that combining both gamma-ray and neutrino data is essential for making the constraints on VHDM properties both strong and robust. In the lower mass range, our constraints on VHDM annihilation and decay are comparable to other results; however, our constraints continue to much higher masses, where they become relatively stronger.Comment: 33 pages, 21 figures, accepted for publication in JCA

    Implications of the Fermi-LAT diffuse gamma-ray measurements on annihilating or decaying Dark Matter

    Full text link
    We analyze the recently published Fermi-LAT diffuse gamma-ray measurements in the context of leptonically annihilating or decaying dark matter (DM) with the aim to explain simultaneously the isotropic diffuse gamma-ray and the PAMELA, Fermi and HESS (PFH) anomalous e±e^\pm data. Five different DM annihilation/decay channels 2e2e, 2μ2\mu, 2τ2\tau, 4e4e, or 4μ4\mu (the latter two via an intermediate light particle ϕ\phi) are generated with PYTHIA. We calculate both the Galactic and extragalactic prompt and inverse Compton (IC) contributions to the resulting gamma-ray spectra. To find the Galactic IC spectra we use the interstellar radiation field model from the latest release of GALPROP. For the extragalactic signal we show that the amplitude of the prompt gamma-emission is very sensitive to the assumed model for the extragalactic background light. For our Galaxy we use the Einasto, NFW and Isothermal DM density profiles and include the effects of DM substructure assuming a simple subhalo model. Our calculations show that for the annihilating DM the extragalactic gamma-ray signal can dominate only if rather extreme power-law concentration-mass relation C(M)C(M) is used, while more realistic C(M)C(M) relations make the extragalactic component comparable or subdominant to the Galactic signal. For the decaying DM the Galactic signal always exceeds the extragalactic one. In the case of annihilating DM the PFH favored parameters can be ruled out only if power-law C(M)C(M) relation is assumed. For DM decaying into 2μ2\mu or 4μ4\mu the PFH favored DM parameters are not in conflict with the Fermi gamma-ray data. We find that, due to the (almost) featureless Galactic IC spectrum and the DM halo substructure, annihilating DM may give a good simultaneous fit to the isotropic diffuse gamma-ray and to the PFH e±e^\pm data without being in clear conflict with the other Fermi-LAT gamma-ray measurements.Comment: Accepted for publication in JCAP, added missing references, new Figs. 9 \& 10, 35 page

    Numerical simulations of a non-commutative theory: the scalar model on the fuzzy sphere

    Get PDF
    We address a detailed non-perturbative numerical study of the scalar theory on the fuzzy sphere. We use a novel algorithm which strongly reduces the correlation problems in the matrix update process, and allows the investigation of different regimes of the model in a precise and reliable way. We study the modes associated to different momenta and the role they play in the ``striped phase'', pointing out a consistent interpretation which is corroborated by our data, and which sheds further light on the results obtained in some previous works. Next, we test a quantitative, non-trivial theoretical prediction for this model, which has been formulated in the literature: The existence of an eigenvalue sector characterised by a precise probability density, and the emergence of the phase transition associated with the opening of a gap around the origin in the eigenvalue distribution. The theoretical predictions are confirmed by our numerical results. Finally, we propose a possible method to detect numerically the non-commutative anomaly predicted in a one-loop perturbative analysis of the model, which is expected to induce a distortion of the dispersion relation on the fuzzy sphere.Comment: 1+36 pages, 18 figures; v2: 1+55 pages, 38 figures: added the study of the eigenvalue distribution, added figures, tables and references, typos corrected; v3: 1+20 pages, 10 eps figures, new results, plots and references added, technical details about the tests at small matrix size skipped, version published in JHE
    corecore