126,918 research outputs found

    A Two-Step Etching Method to Fabricate Nanopores in Silicon

    Get PDF
    A cost effectively method to fabricate nanopores in silicon by only using the conventional wet-etching technique is developed in this research. The main concept of the proposed method is a two-step etching process, including a premier double-sided wet etching and a succeeding track-etching. A special fixture is designed to hold the pre-etched silicon wafer inside it such that the track-etching can be effectively carried out. An electrochemical system is employed to detect and record the ion diffusion current once the pre-etched cavities are etched into a through nanopore. Experimental results indicate that the proposed method can cost effectively fabricate nanopores in silicon.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    An Improved NSGA-II and its Application for Reconfigurable Pixel Antenna Design

    Get PDF
    Based on the elitist non-dominated sorting genetic algorithm (NSGA-II) for multi-objective optimization problems, an improved scheme with self-adaptive crossover and mutation operators is proposed to obtain good optimization performance in this paper. The performance of the improved NSGA-II is demonstrated with a set of test functions and metrics taken from the standard literature on multi-objective optimization. Combined with the HFSS solver, one pixel antenna with reconfigurable radiation patterns, which can steer its beam into six different directions (θDOA = ± 15°, ± 30°, ± 50°) with a 5 % overlapping impedance bandwidth (S11 < − 10 dB) and a realized gain over 6 dB, is designed by the proposed self-adaptive NSGA-II

    The shape of disorder broadened Landau subbands in graphene

    Full text link
    Density of states (DOS) of graphene under a high uniform magnetic field and white-noise random potential is numerically calculated. The disorder broadened zero-energy Landau band has a Gaussian shape whose width is proportional to the random potential variance and the square root of magnetic field. Wegner-type calculation is used to justify the results

    The 7-channel FIR HCN Interferometer on J-TEXT Tokamak

    Full text link
    A seven-channel far-infrared hydrogen cyanide (HCN) laser interferometer has been established aiming to provide the line integrated plasma density for the J-TEXT experimental scenarios. A continuous wave glow discharge HCN laser designed with a cavity length 3.4 m is used as the laser source with a wavelength of 337 {\mu}m and an output power up to 100 mW. The system is configured as a Mach-Zehnder type interferometer. Phase modulation is achieved by a rotating grating, with a modulation frequency of 10 kHz which corresponds to the temporal resolution of 0.1 ms. The beat signal is detected by TGS detector. The phase shift induced by the plasma is derived by the comparator with a phase sensitivity of 0.06 fringe. The experimental results measured by the J-TEXT interferometer are presented in details. In addition, the inversed electron density profile done by a conventional approach is also given. The kinematic viscosity of dimethyl silicone and vibration control is key issues for the system performance. The laser power stability under different kinematic viscosity of silicone oil is presented. A visible improvement of measured result on vibration reduction is shown in the paper.Comment: conference (15th-International Symposium on Laser-Aided Plasma Diagnostics
    corecore