89,870 research outputs found

    Superconductivity in the Two-Dimensional tt-JJ Model at Low Hole Doping

    Full text link
    By combining a generalized Lanczos scheme with the variational Monte Carlo method we can optimize the short- and long-range properties of the groundstate separately. This allows us to measure the long-range order of the groundstate of the tt-JJ model as a function of the coupling constant J/tJ/t, and identify a region of finite d-wave superconducting long-range order. With a lattice size of 50 sites we can reliably examine hole densities down to 0.16.Comment: 12 pages and 4 PostScript figures, ReVTeX 3.0, ETH-TH/94-1

    Shot noise spectrum of superradiant entangled excitons

    Full text link
    The shot noise produced by tunneling of electrons and holes into a double dot system incorporated inside a p-i-n junction is investigated theoretically. The enhancement of the shot noise is shown to originate from the entangled electron-hole pair created by superradiance. The analogy to the superconducting cooper pair box is pointed out. A series of Zeno-like measurements is shown to destroy the entanglement, except for the case of maximum entanglement.Comment: 5 pages, 3 figures, to appear in Phys. Rev. B (2004

    Reconstructing the geometric structure of a Riemannian symmetric space from its Satake diagram

    Full text link
    The local geometry of a Riemannian symmetric space is described completely by the Riemannian metric and the Riemannian curvature tensor of the space. In the present article I describe how to compute these tensors for any Riemannian symmetric space from the Satake diagram, in a way that is suited for the use with computer algebra systems. As an example application, the totally geodesic submanifolds of the Riemannian symmetric space SU(3)/SO(3) are classified. The submission also contains an example implementation of the algorithms and formulas of the paper as a package for Maple 10, the technical documentation for this implementation, and a worksheet carrying out the computations for the space SU(3)/SO(3) used in the proof of Proposition 6.1 of the paper.Comment: 23 pages, also contains two Maple worksheets and technical documentatio

    Variational Study of the Spin-Gap Phase of the One-Dimensional t-J Model

    Full text link
    We propose a correlated spin-singlet-pairs wave function to describe the spin-gap phase of the one-dimensional tJt-J model at low density. Adding a Jastrow factor with a variational parameter, ν\nu, first introduced by Hellberg and Mele, is shown to correctly describe the long-range behavior expected for the Luther-Emery phase. Using the variational Monte Carlo method we establish a relation between ν\nu and the Luttinger exponent KρK_\rho, Kρ=12νK_\rho=\frac{1}{2\nu}.Comment: 4 pages (LaTex), 3 figures attache

    Predictive modeling of die filling of the pharmaceutical granules using the flexible neural tree

    Get PDF
    In this work, a computational intelligence (CI) technique named flexible neural tree (FNT) was developed to predict die filling performance of pharmaceutical granules and to identify significant die filling process variables. FNT resembles feedforward neural network, which creates a tree-like structure by using genetic programming. To improve accuracy, FNT parameters were optimized by using differential evolution algorithm. The performance of the FNT-based CI model was evaluated and compared with other CI techniques: multilayer perceptron, Gaussian process regression, and reduced error pruning tree. The accuracy of the CI model was evaluated experimentally using die filling as a case study. The die filling experiments were performed using a model shoe system and three different grades of microcrystalline cellulose (MCC) powders (MCC PH 101, MCC PH 102, and MCC DG). The feed powders were roll-compacted and milled into granules. The granules were then sieved into samples of various size classes. The mass of granules deposited into the die at different shoe speeds was measured. From these experiments, a dataset consisting true density, mean diameter (d50), granule size, and shoe speed as the inputs and the deposited mass as the output was generated. Cross-validation (CV) methods such as 10FCV and 5x2FCV were applied to develop and to validate the predictive models. It was found that the FNT-based CI model (for both CV methods) performed much better than other CI models. Additionally, it was observed that process variables such as the granule size and the shoe speed had a higher impact on the predictability than that of the powder property such as d50. Furthermore, validation of model prediction with experimental data showed that the die filling behavior of coarse granules could be better predicted than that of fine granules

    Low-Energy Charge-Density Excitations in MgB2_{2}: Striking Interplay between Single-Particle and Collective Behavior for Large Momenta

    Full text link
    A sharp feature in the charge-density excitation spectra of single-crystal MgB2_{2}, displaying a remarkable cosine-like, periodic energy dispersion with momentum transfer (qq) along the cc^{*}-axis, has been observed for the first time by high-resolution non-resonant inelastic x-ray scattering (NIXS). Time-dependent density-functional theory calculations show that the physics underlying the NIXS data is strong coupling between single-particle and collective degrees of freedom, mediated by large crystal local-field effects. As a result, the small-qq collective mode residing in the single-particle excitation gap of the B π\pi bands reappears periodically in higher Brillouin zones. The NIXS data thus embody a novel signature of the layered electronic structure of MgB2_{2}.Comment: 5 pages, 4 figures, submitted to PR

    Eigenvalues of Ruijsenaars-Schneider models associated with An1A_{n-1} root system in Bethe ansatz formalism

    Get PDF
    Ruijsenaars-Schneider models associated with An1A_{n-1} root system with a discrete coupling constant are studied. The eigenvalues of the Hamiltonian are givein in terms of the Bethe ansatz formulas. Taking the "non-relativistic" limit, we obtain the spectrum of the corresponding Calogero-Moser systems in the third formulas of Felder et al [20].Comment: Latex file, 25 page

    Hidden and Generalized Conformal Symmetry of Kerr-Sen Spacetimes

    Full text link
    It is recently conjectured that generic non-extremal Kerr black hole could be holographically dual to a hidden conformal field theory in two dimensions. Moreover, it is known that there are two CFT duals (pictures) to describe the charged rotating black holes which correspond to angular momentum JJ and electric charge QQ of the black hole. Furthermore these two pictures can be incorporated by the CFT duals (general picture) that are generated by SL(2,Z)SL(2,\mathbb{Z}) modular group. The general conformal structure can be revealed by looking at charged scalar wave equation in some appropriate values of frequency and charge. In this regard, we consider the wave equation of a charged massless scalar field in background of Kerr-Sen black hole and show in the "near region", the wave equation can be reproduced by the Casimir operator of a local SL(2,R)L×SL(2,R)RSL(2,\mathbb{R})_L \times SL(2,\mathbb{R})_R hidden conformal symmetry. We can find the exact agreement between macroscopic and microscopic physical quantities like entropy and absorption cross section of scalars for Kerr-Sen black hole. We then find an extension of vector fields that in turn yields an extended local family of SL(2,R)L×SL(2,R)RSL(2,\mathbb{R})_L \times SL(2,\mathbb{R})_R hidden conformal symmetries, parameterized by one parameter. For some special values of the parameter, we find a copy of SL(2,R)SL(2,\mathbb{R}) hidden conformal algebra for the charged Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole in the strong deflection limit.Comment: 16 pages, new material and results added, extensive improvements in interpretation of results, references adde

    Blow-up solutions for linear perturbations of the Yamabe equation

    Full text link
    For a smooth, compact Riemannian manifold (M,g) of dimension N \geg 3, we are interested in the critical equation Δgu+(N2/4(N1)Sg+ϵh)u=uN+2/N2inM,u>0inM,\Delta_g u+(N-2/4(N-1) S_g+\epsilon h)u=u^{N+2/N-2} in M, u>0 in M, where \Delta_g is the Laplace--Beltrami operator, S_g is the Scalar curvature of (M,g), hC0,α(M)h\in C^{0,\alpha}(M), and ϵ\epsilon is a small parameter

    Nonlinear entanglement witnesses, covariance matrices and the geometry of separable states

    Get PDF
    Entanglement witnesses provide a standard tool for the analysis of entanglement in experiments. We investigate possible nonlinear entanglement witnesses from several perspectives. First, we demonstrate that they can be used to show that the set of separable states has no facets. Second, we give a new derivation of nonlinear witnesses based on covariance matrices. Finally, we investigate extensions to the multipartite case.Comment: 12 pages, 2 figures, for the proceedings of DICE2006 in Piombino (Italy
    corecore