3,943 research outputs found
The nuclear shell effects near the r-process path in the relativistic Hartree-Bogoliubov theory
We have investigated the evolution of the shell structure of nuclei in going
from the r-process path to the neutron drip line within the framework of the
Relativistic Hartree-Bogoliubov (RHB) theory. By introducing the quartic
self-coupling of meson in the RHB theory in addition to the non-linear
scalar coupling of meson, we reproduce the available data on the shell
effects about the waiting-point nucleus Zn. With this approach, it is
shown that the shell effects at N=82 in the inaccessible region of the
r-process path become milder as compared to the Lagrangian with the scalar
self-coupling only. However, the shell effects remain stronger as compared to
the quenching exhibited by the HFB+SkP approach. It is also shown that in
reaching out to the extreme point at the neutron drip line, a terminal
situation arises where the shell structure at the magic number is washed out
significantly.Comment: 18 pages (revtex), 8 ps figures, to appear in Phys. Rev.
Fermionic superfluidity: From high Tc superconductors to ultracold Fermi gases
We present a pairing fluctuation theory which self-consistently incorporates
finite momentum pair excitations in the context of BCS--Bose-Einstein
condensation (BEC) crossover, and we apply this theory to high
superconductors and ultracold Fermi gases. There are strong similarities
between Fermi gases in the unitary regime and high Tc superconductors. Here we
address key issues of common interest, especially the pseudogap. In the Fermi
gases we summarize recent experiments including various phase diagrams (with
and without population imbalance), as well as evidence for a pseudogap in
thermodynamic and other experiments.Comment: Expanded version, invited talk at the 5th International Conference on
Complex Matter -- Stripes 2006, 6 pages, 6 figure
Approximate Solution of the effective mass Klein-Gordon Equation for the Hulthen Potential with any Angular Momentum
The radial part of the effective mass Klein-Gordon equation for the Hulthen
potential is solved by making an approximation to the centrifugal potential.
The Nikiforov-Uvarov method is used in the calculations. Energy spectra and the
corresponding eigenfunctions are computed. Results are also given for the case
of constant mass.Comment: 12 page
Stripes in Quantum Hall Double Layer Systems
We present results of a study of double layer quantum Hall systems in which
each layer has a high-index Landau level that is half-filled. Hartree-Fock
calculations indicate that, above a critical layer separation, the system
becomes unstable to the formation of a unidirectional coherent charge density
wave (UCCDW), which is related to stripe states in single layer systems. The
UCCDW state supports a quantized Hall effect when there is tunneling between
layers, and is {\it always} stable against formation of an isotropic Wigner
crystal for Landau indices . The state does become unstable to the
formation of modulations within the stripes at large enough layer separation.
The UCCDW state supports low-energy modes associated with interlayer coherence.
The coherence allows the formation of charged soliton excitations, which become
gapless in the limit of vanishing tunneling. We argue that this may result in a
novel {\it ``critical Hall state''}, characterized by a power law in
tunneling experiments.Comment: 10 pages, 8 figures include
Entrepreneurial Value Creation in the Cloud: Exploring the Value Dimensions of the Business Model
Part 5: Research in ProgressInternational audienceCloud computing’s potential in creating and capturing business value is being increasingly acknowledged. Existing empirical studies of business value in cloud computing have focused on user organizations and large enterprises with legacy systems. Acknowledging the innovation opportunities created by cloud, we study entrepreneurial cloud service providers. In this paper we conduct an exploratory study of six cloud-based start-up firms in India. We examine the value dimensions of the business model concept to study entrepreneurial value creation in the cloud. We find that cloud is a key resource in the structural configuration of their business model and enables the value proposition
Dirac gaugino as leptophilic dark matter
We investigate the leptophilic properties of Dirac gauginos in an
R--symmetric N=2 supersymmetric model with extended gauge and Higgs sectors.
The annihilation of Dirac gauginos to leptons requires no chirality flip in the
final states so that it is not suppressed as in the Majorana case. This implies
that it can be sizable enough to explain the positron excess observed by the
PAMELA experiment with moderate or no boost factors. When squark masses are
heavy, the annihilation of Dirac gauginos to hadrons is controlled by their
Higgsino fraction and is driven by the and final states.
Moreover, at variance with the Majorana case, Dirac gauginos with a
non-vanishing higgsino fraction can also have a vector coupling with the
gauge boson leading to a sizable spin--independent scattering cross section off
nuclei. Saturating the current antiproton limit, we show that Dirac gauginos
can leave a signal in direct detection experiments at the level of the
sensitivity of dark matter searches at present and in the near future.Comment: 24 pages, 10 figures, typos corrected, final version published on
JCA
ProNodal acts via FGFR3 to govern duration of Shh expression in the prechordal mesoderm
The secreted glycoprotein sonic hedgehog (Shh) is expressed in the prechordal mesoderm, where it plays a crucial role in induction and patterning of the ventral forebrain. Currently little is known about how Shh is regulated in prechordal tissue. Here we show that in the embryonic chick, Shh is expressed transiently in prechordal mesoderm, and is governed by unprocessed Nodal. Exposure of prechordal mesoderm microcultures to Nodal-conditioned medium, the Nodal inhibitor CerS, or to an ALK4/5/7 inhibitor reveals that Nodal is required to maintain both Shh and Gsc expression, but whereas Gsc is largely maintained through canonical signalling, Nodal signals through a non-canonical route to maintain Shh. Further, Shh expression can be maintained by a recombinant Nodal cleavage mutant, proNodal, but not by purified mature Nodal. A number of lines of evidence suggest that proNodal acts via FGFR3. ProNodal and FGFR3 co-immunoprecipitate and proNodal increases FGFR3 tyrosine phosphorylation. In microcultures, soluble FGFR3 abolishes Shh without affecting Gsc expression. Further, prechordal mesoderm cells in which Fgfr3 expression is reduced by Fgfr3 siRNA fail to bind to proNodal. Finally, targeted electroporation of Fgfr3 siRNA to prechordal mesoderm in vivo results in premature Shh downregulation without affecting Gsc. We report an inverse correlation between proNodal-FGFR3 signalling and pSmad1/5/8, and show that proNodal-FGFR3 signalling antagonises BMP-mediated pSmad1/5/8 signalling, which is poised to downregulate Shh. Our studies suggest that proNodal/FGFR3 signalling governs Shh duration by repressing canonical BMP signalling, and that local BMPs rapidly silence Shh once endogenous Nodal-FGFR3 signalling is downregulated
Heat Conduction and Magnetic Phase Behavior in Electron-Doped Ca_{1-x} La_x MnO_3(0 <= x <= 0.2)
Measurements of thermal conductivity (kappa) vs temperature are reported for
a series of Ca_{1-x} La_x MnO_3(0 <= x <= 0.2) specimens. For the undoped
(x=0), G-type antiferromagnetic compound a large enhancement of kappa below the
Neel temperature (T_N ~ 125 K) indicates a strong coupling of heat-carrying
phonons to the spin system. This enhancement exhibits a nonmonotonic behavior
with increasing x and correlates remarkably well with the small ferromagnetic
component of the magnetization reported previously [Neumeier and Cohn, Phys.
Rev. B 61 14319 (2000).] Magnetoelastic polaron formation appears to underly
the behavior of kappa and the magnetization at x <= 0.02.Comment: submitted to PRB; 4 pp., 4 Fig.'s, RevTex
Combining visual and textual systems within the context of user feedback
It has been proven experimentally, that a combination of textual and visual representations can improve the retrieval performance ([20], [23]). It is due to the fact, that the textual and visual feature spaces often represent complementary yet correlated aspects of the same image, thus forming a composite system.
In this paper, we present a model for the combination of visual and textual sub-systems within the user feedback context. The model was inspired by the measurement utilized in quantum mechanics (QM) and the tensor product of co-occurrence (density) matrices, which represents a density matrix of the composite system in QM. It provides a sound and natural framework to seamlessly integrate multiple feature spaces by considering them as a composite system, as well as a new way of measuring the relevance of an image with respect to a context. The proposed approach takes into account both intra (via co-occurrence matrices) and inter (via tensor operator) relationships between features’ dimensions. It is also computationally cheap and scalable to large data collections. We test our approach on ImageCLEF2007photo data collection and present interesting findings
Competition between quantum-liquid and electron-solid phases in intermediate Landau levels
On the basis of energy calculations we investigate the competition between
quantum-liquid and electron-solid phases in the Landau levels n=1,2, and 3 as a
function of their partial filling factor. Whereas the quantum-liquid phases are
stable only in the vicinity of quantized values 1/(2s+1) of the partial filling
factor, an electron solid in the form of a triangular lattice of clusters with
a few number of electrons (bubble phase) is energetically favorable between
these fillings. This alternation of electron-solid phases, which are insulating
because they are pinned by the residual impurities in the sample, and quantum
liquids displaying the fractional quantum Hall effect explains a recently
observed reentrance of the integral quantum Hall effect in the Landau levels
n=1 and 2. Around half-filling of the last Landau level, a uni-directional
charge density wave (stripe phase) has a lower energy than the bubble phase.Comment: 12 pages, 9 figures; calculation of exact exchange potential for
n=1,2,3 included, energies of electron-solid phases now calculated with the
help of the exact potential, and discussion of approximation include
- …