49 research outputs found

    Microfiber-based polarization beam splitter and its application for passively mode-locked all-fiber laser

    Get PDF
    Nonlinear polarization evolution based on polarization beam splitter (PBS) is a classical technique for passive mode-locking of fiber lasers. Different from commonly used bulky PBS, in this paper all-fiber PBSs composed of two parallel coupled microfibers have been proposed and fabricated under the condition of appropriate microfiber diameter and coupling length. Using our fabricated microfiber PBSs, passively mode-locked all-fiber lasers have also been demonstrated. The results indicate that the microfiber-based PBS has advantages of simple fabrication, compact size, and most importantly, variable polarization extinction ratio and operation bandwidth. The all-fiber mode-locked lasers with the microfiber PBSs generating stable pulses at both 1.0 μm and 1.5 μm wavelength bands have comparable performance with their counterparts based on bulky PBSs. It may be a step towards true all-fiber mode-locked laser and other all-fiber systems

    Automatic arc discharge-induced helical long period fiber gratings and its sensing applications

    Get PDF
    We experimentally demonstrate an automatic arc discharge technology for inscribing high-quality helically twisted long period fiber gratings (H-LPFGs) with greatly improved inscription efficiency for single mode fibers. The proposed technology has been developed by implementing an embedded program in a commercial fusion splicer, which employs an ultraprecision motorized translation stage while the tensioning mass required by conventional inscribing technology is eliminated. More significantly, the arc-induced H-LPFGs have been reported to have potential usage as sensors in temperature, refractive index, twist stress, and strain

    Dispersion and intersection of hydrothermal plumes in the Manus Back-Arc Basin, Western Pacific

    Get PDF
    The composition of hydrothermal plumes reflects the physical and chemical characteristics of seafloor hydrothermal fluids, which in turn reflects the host rock and subseafloor reaction conditions as well as the water column processes that act to alter the plumes as they disperse and age. Here, we show that the turbidity, current, pH value, dissolved Fe (dFe), and dissolved Mn (dMn) compositions of hydrothermal plumes can be used to understand the spatial distribution and source of hydrothermal systems in the submarine geological environment. Data were obtained from 18 hydrocast stations, among which the water column samples were collected at 8 stations during the MANUS cruise of R/V KEXUE in 2015. The results showed that the Satanic Mills plume and Fenway plume rose approximately 140 m and 220 m above the seafloor, respectively. In the Satanic Mills plume, dFe remained longer than dMn during lateral plume dispersal. There was a clear intersection of the Satanic Mills plume and Fenway plume between 1625 m and 1550 m in the PACMANUS hydrothermal field, and the varied dispersion trends of the mixed plumes were affected by current velocities at different depths. The physical and chemical properties of the seawater columns in the Manus Basin were affected by the input of high-Mn, high-Fe, and low-Mg vent fluids. The turbidity and dFe, dMn, and dissolved Mg concentrations in the sections of the plumes proximal to the Satanic Mills, Fenway, and Desmos vent sites were generally higher (turbidity, Mn, and Fe) and lower (Mg) than those in the sections of the plumes that were more distal from the vent sites. This implied that the plumes proximal to their vent fluid sources, which were interpreted to have relatively young ages, dispersed chemically over time, and their concentrations became more similar to those of the plumes that were more distal from their vent fluid sources

    (S)-2-(1H-Imidazol-1-yl)-3-phenyl­propanol

    Get PDF
    In the title compound, C12H14N2O, the middle C atom in the propanol chain is a chiral center and possesses an S absolute configuration, according to the synthesis. In the crystal structure, inter­molecular O—H⋯N hydrogen bonds link the mol­ecules into a chain along the b axis

    A Leucine Aminopeptidase-Activated Theranostic Prodrug for Cancer Diagnosis and Chemotherapy

    Get PDF
    Currently, chemotherapy is a widely used and important treatment for cancer. However, almost all of the treatments have shortcomings associated with poor specificity and high toxicity, which results in severe side effects to normal cells and tissue. This is a very important problem, and yet, it currently remains unanswered. Therefore, the development of the method for the more effective delivery of anticancer drugs to their targets and real-time monitoring of the localization of the drugs are very important. Herein, we designed a theranostic prodrug: CPT-p-Leu, which was constructed using fluorescent camptothecin (CPT), a self-immolative linker and leucine (Leu) residue. Upon exposure to LAP (leucine aminopeptidase: LAP), the amide bond in CPT-p-Leu will be cleaved, followed by an intramolecular 1,6-elimination, which triggers the active anticancer drug (CPT) release and recovers the fluorescence of CPT. With our design, the anticancer drug, CPT, can be used as both a drug and a fluorescence reporter, making our system suitable to accurately and effectively track the released CPT distribution. Based on this strategy, CPT-p-Leu could achieve the chemoselective detection of LAP and monitoring of the anticancer drug release. Furthermore, it also provides a very convenient way to accurately determine the location of the released drug in living samples. In addition, CPT-p-Leu shows a good cell membrane permeability and enhanced cytotoxicity toward LAP overexpressing cancer cells. We anticipate that our research will facilitate the development of improved theranostic systems for cancer therapy.</p

    A Leucine Aminopeptidase-Activated Theranostic Prodrug for Cancer Diagnosis and Chemotherapy

    Get PDF
    Currently, chemotherapy is a widely used and important treatment for cancer. However, almost all of the treatments have shortcomings associated with poor specificity and high toxicity, which results in severe side effects to normal cells and tissue. This is a very important problem, and yet, it currently remains unanswered. Therefore, the development of the method for the more effective delivery of anticancer drugs to their targets and real-time monitoring of the localization of the drugs are very important. Herein, we designed a theranostic prodrug: CPT-p-Leu, which was constructed using fluorescent camptothecin (CPT), a self-immolative linker and leucine (Leu) residue. Upon exposure to LAP (leucine aminopeptidase: LAP), the amide bond in CPT-p-Leu will be cleaved, followed by an intramolecular 1,6-elimination, which triggers the active anticancer drug (CPT) release and recovers the fluorescence of CPT. With our design, the anticancer drug, CPT, can be used as both a drug and a fluorescence reporter, making our system suitable to accurately and effectively track the released CPT distribution. Based on this strategy, CPT-p-Leu could achieve the chemoselective detection of LAP and monitoring of the anticancer drug release. Furthermore, it also provides a very convenient way to accurately determine the location of the released drug in living samples. In addition, CPT-p-Leu shows a good cell membrane permeability and enhanced cytotoxicity toward LAP overexpressing cancer cells. We anticipate that our research will facilitate the development of improved theranostic systems for cancer therapy.</p

    Tunable multiwavelength SOA fiber laser with ultra-narrow wavelength spacing based on nonlinear polarization rotation

    Get PDF
    A tunable multiwavelength fiber laser with ultra-narrow wavelength spacing and large wavelength number using a semiconductor optical amplifier (SOA) has been demonstrated. Intensity-dependent transmission induced by nonlinear polarization rotation in the SOA accounts for stable multiwavelength operation with wavelength spacing less than the homogenous broadening linewidth of the SOA. Stable multiwavelength lasing with wavelength spacing as small as 0.08 nm and wavelength number up to 126 is achieved at room temperature. Moreover, wavelength tuning of 20.2 nm is implemented via polarization tuning

    Performance of Detecting IgM Antibodies against Enterovirus 71 for Early Diagnosis

    Get PDF
    Enterovirus 71 (EV71) infection is more likely to induce severe complications and mortality than other enteroviruses. Methods for detection of IgM antibody against EV71 had been established for years, however, the performance of the methods in the very early diagnosis of EV71 infection had not been fully evaluated, which is especially meaningful because of the short incubation period of EV71 infection. In this report, the performance of an IgM anti-EV71 assay was evaluated using acute sera collected from 165 EV71 infected patients, 165 patients infected with other enteroviruses, and more than 2,000 sera from healthy children or children with other infected diseases. The results showed a 90% sensitivity in 20 patients who were in their first illness day, and similar sensitivity remained till 4 days after onset. After then the sensitivity increased to 95% to 100% for more than one month. The specificity of the assay in non-HFMD children is 99.1% (95% CI: 98.6–99.4), similar as the 99.9% specificity in healthy adults. The cross-reaction rate in patients infected with other non-EV71 enteroviruses was 11.4%. In conclusion, the data here presented show that the detection of IgM anti-EV71 by ELISA affords a reliable, convenient, and prompt diagnosis of EV71 infection
    corecore