126 research outputs found

    Midgap States in Antiferromagnetic Heisenberg Chains with A Staggered Field

    Full text link
    We study low-energy excitations in antiferromagnetic Heisenberg chains with a staggered field which splits the spectrum into a longitudinal and a transverse branch. Bound states are found to exist inside the field induced gap in both branches. They originate from the edge effects and are inherent to spin-chain materials. The sine-Gordon scaling hs2/3loghs1/6h_s^{2/3}|\log h_s|^{1/6} (hsh_s: the staggered field) provides an accurate description for the gap and midgap energies in the transverse branch for S=1/2S=1/2 and the midgap energies in both branches for S=3/2S=3/2 over a wide range of magnetic field; however, it can fit other low-energy excitations only at much lower field. Moreover, the integer-spin S=1 chain displays scaling behavior that does not fit this scaling law. These results reveal intriguing features of magnetic excitations in spin-chain materials that deserve further investigation.Comment: 4 pages, 4figure

    A New Species of the Genus Trimeresurus from Southwest China (Squamata: Viperidae)

    Get PDF
    Species from the Trimeresurus popeiorum complex (Subgenus: Popeia) is a very complex group. T. popeiorum is the only Popeia species known from China. During the past two years, five adult Popeia specimens (4 males, 1 female) were collected from Yingjiang County, Southern Yunnan, China. Molecular, morphological and ecological data show distinct differences from known species, herein we describe these specimens as a new species Trimeresurus yingjiangensis sp. nov Chen, Ding, Shi and Zhang, 2018. Morphologically, the new species distinct from other Popeia species by a combination of following characters: (1) dorsal body olive drab,without cross bands on the scales; (2) a conspicuous bicolor ventrolateral stripe present on each side of males, first row of dorsal scales firebrick with a white ellipse dot on posterior upper part in male, these strips absent in females; (3) eyes firebrick in both gender; (4) suboculars separated from 3rd upper labial by one scale on each side; (5) ventrals 164–168 (n = 5); (6) MSR 21

    Resilient distributed control of islanded microgrids under hybrid attacks

    Get PDF
    In this paper, a resilient control strategy is proposed to improve the stability of frequency and voltage recovery for the islanded microgrid (MG) under hybrid cyber attacks. To deal with the common false data injection attacks (FDI) and denial of service attacks (DoS) in MGs, the proposed resilient control strategy utilizes the observers to accurately estimate the potential FDI signals on both the sensors and actuators of each distributed generation unit (DG) and reconstruct the unavailable states in the system to enhance the system’s ability actively. The ultimate uniform boundedness (UUB) of the system under hybrid cyber attacks is proved by the Lyapunov stability theory. Finally, an islanded MG system is established in MATLAB/SIMULINK, and multiple scenarios are simulated to verify the effectiveness of the method

    Hypoglycemic activity and the activation of phosphorylation of a triterpenoid-rich extract from Euryale shell on streptozotocin-induced diabetic mice

    Get PDF
    In the present study, we examined the hypoglycemic properties and the effective mechanisms of a triterpenoid-rich extract from the Euryale shell (ES) in streptozotocin-induced (STZ) diabetic mice. The hydroalcoholic extract of ES (200, 400 and 600 mg/kg/day) was orally administered to STZ-diabetic mice for 4 weeks. We observed that in the liver of diabetic mice, the ES extract caused a sharp reduction in the gene expression of protein tyrosine phosphatase-1B (PTP1B) but induced the gene expression of phosphatidyl-inositol-3-kinase (PI-3K) and protein kinase B (PKB) compared with that of untreated diabetic mice. Additionally, a significant increase in the phosphorylation of the PKB protein was observed (p<0.01). This was corroborated by the inhibition of PTP1B and by the regulation of glucose uptake via PI-3K activation, which together demonstrate that the reduction of PTP1B can modulate key insulin signaling events downstream of the insulin receptor.

    Dual functions of the ZmCCT-associated quantitative trait locus in flowering and stress responses under long-day conditions

    Get PDF
    Gene ontology enrichment of differentially expressed genes in HZ4 and HZ4-NIL in three development stages. (XLS 21 kb

    The TRAPs From Microglial Vesicles Protect Against Listeria Infection in the CNS

    Get PDF
    Previous studies have demonstrated that T cells and microglia could fight against cerebral Listeria monocytogenes (Listeria); however, their synergistic anti-Listeria mechanisms remain unknown. Following Listeria infection in a culture system, we found that microglia, but not nerve cells, could release extracellular traps (ETs) which originated from microglial vesicles. Specific inhibitor analysis showed that extracellular DNA (eDNA), matrix metallopeptidases (MMP9 and MMP12), citrullinated histone H3, and peptidyl arginine deiminase 2 were the major components of microglial ETs (MiETs) and were also the components of vesicles. Systematic analysis indicated that Listeria-induced MiETs were cytosolic reactive oxygen species (ROS)- and NADPH oxidase (NOX)-dependent and involved ERK. MiETs were exhibited in Listeria-infected mouse brain and might protected against Listeria infection via bacterial killing in a mouse meningitis model, and MiETs existed in cerebrospinal fluid (CSF) from Listeria meningitis patients in vivo and in vitro. Additionally, interferon-γ could induce MiET formation in Listeria-infected microglia in vitro that was mediated by NOX, and there was a positive relationship between the elevated level of IFN-γ and eDNA and nucleosomes in the brain homogenates and CSF of Listeria meningitis model mice and in the CSF before treatment in clinical Listeria meningitis patients. Together, this is the first report of MiET formation, these findings pave the way for deeper exploration of the innate immune response to pathogens in CNS

    The characteristic and size–frequency distribution of rocks at the Zhurong landing site, Mars

    Get PDF
    The rock characteristic and size–frequency distribution (SFD) on Mars are important for understanding the geologic and geomorphic history of the surface, for evaluating the trafficability of roving, and for planning the potential infrastructure construction. Tianwen-1, China’s first autonomous Mars exploration mission, formed an excavated depression during touchdown, which has been the deepest depression on the Martian surface so far compared with others. According to the images captured using the Navigation and Terrain Cameras (NaTeCams) onboard the rover, Zhurong, the SFD of rocks is calculated and compared inside the excavated depression, within and out of the blast zone. For the first time, the rock size distribution inside the excavated depression is obtained, exposing the geological features of the shallow subsurface on Mars at a depth of tens of centimeters, which will surely be important for future drilling missions. It is found that the rock abundance in the depression is smaller than the original abundance on the surface, and the distribution of rocks in the blast zone on the surface is greatly influenced by the touchdown. In addition, based on the fractal dimension of rock sizes, the rocks (&gt;10 mm) at the shallow subsurface of the Zhurong landing site may experience two different geological processes

    Field-induced gap in the spin-1/2 antiferromagnetic Heisenberg chain: A density matrix renormalization group study

    Full text link
    We study the spin-1/2 antiferromagnetic Heisenberg chain in both uniform and (perpendicular) staggered magnetic fields using the density-matrix renormalization-group method. This model has been shown earlier to describe the physics of the copper benzoate materials in magnetic field. In the present work, we extend the study to more general case for a systematic investigation of the field-induced gap and related properties of the spin-1/2 antiferromagnetic Heisenberg chain. In particular, we explore the high magnetic field regime where interesting behaviors in the field-induced gap, magnetization, and spin correlation functions are found. Careful examination of the low energy properties and magnetization reveals interesting competing effects of the staggered and uniform fields. The incommensurate behavior in the spin correlation functions is demonstrated and discussed in detail. The present work reproduces earlier results in good agreement with experimental data on copper benzoate and predicts new interesting field-induced features at very high magnetic field.Comment: 8 pages, 6 figure

    Reactive Oxygen Species Affect the Tenderness of Bovine Muscle by Regulating Glycolysis during the Early Stage of Postmortem Cold Storage

    Get PDF
    This study was conducted to investigate the regulatory mechanism of reactive oxygen species (ROS) on the glycolysis pathway of bovine muscle and its impact on meat tenderness at the early stage of postmortem cold storage. Fresh beef was treated with hydrogen peroxide (H2O2) as a major ROS, N-acetyl-L-cysteine (NAC) as an ROS scavenger, or physiological saline as a control before being stored at 4 ℃. After 0.5, 6, 12, 24, and 48 hours, the glycolysis level and tenderness indices were assessed. In addition, tandem mass tag (TMT)-labeled quantitative proteomics was used for protein identification and quantitative analysis of the samples after 24 hours and for screening of differential proteins in the glycolysis pathway. The findings showed that the glycolysis level increased significantly in the H2O2-treated group, and glycogenolysis and lactic acid accumulation were significantly higher than those in the other two groups (P < 0.05). In contrast, the glycolysis process was significantly suppressed by NAC treatment. The H2O2-treated group reached the ultimate pH after 12 hours, 12 and 36 hours earlier than the control and NAC groups, respectively. The shear force of the H2O2-treated group reached its maximum after 12 hours, and the myofibrillar fragmentation index (MFI) was significantly greater than that of the other two groups after 6–48 hours (P < 0.05), indicating that a higher ROS level can accelerate the tenderization of bovine muscle by enhancing the glycolysis capacity during postmortem refrigeration. Totally eight up-regulated proteins and two down-regulated proteins in the glycolysis pathway were identified in the H2O2-treated versus control groups after 24 hours of refrigeration. Among these proteins, the up-regulated core proteins of phosphoglycerate mutase (PGAM), enolase (ENO), and pyruvate dehydrogenase E1 subunit beta (PDHB) coordinated with the down-regulated pyruvate dehydrogenase E1 subunit alpha (PDHA) to accelerate the glycolysis process. In conclusion, ROS can speed up glycolysis and consequently improve meat tenderness by regulating the expression of key proteins in the glycolysis pathway
    corecore