54 research outputs found

    Molecular Basis of Efficient Replication and Pathogenicity of H9N2 Avian Influenza Viruses in Mice

    Get PDF
    H9N2 subtype avian influenza viruses (AIVs) have shown expanded host range and can infect mammals, such as humans and swine. To date the mechanisms of mammalian adaptation and interspecies transmission of H9N2 AIVs remain poorly understood. To explore the molecular basis determining mammalian adaptation of H9N2 AIVs, we compared two avian field H9N2 isolates in a mouse model: one (A/chicken/Guangdong/TS/2004, TS) is nonpathogenic, another one (A/chicken/Guangdong/V/2008, V) is lethal with efficient replication in mouse brains. In order to determine the basis of the differences in pathogenicity and brain tropism between these two viruses, recombinants with a single gene from the TS (or V) virus in the background of the V (or TS) virus were generated using reverse genetics and evaluated in a mouse model. The results showed that the PB2 gene is the major factor determining the virulence in the mouse model although other genes also have variable impacts on virus replication and pathogenicity. Further studies using PB2 chimeric viruses and mutated viruses with a single amino acid substitution at position 627 [glutamic acid (E) to lysine, (K)] in PB2 revealed that PB2 627K is critical for pathogenicity and viral replication of H9N2 viruses in mouse brains. All together, these results indicate that the PB2 gene and especially position 627 determine virus replication and pathogenicity in mice. This study provides insights into the molecular basis of mammalian adaptation and interspecies transmission of H9N2 AIVs

    The Ninth Visual Object Tracking VOT2021 Challenge Results

    Get PDF
    acceptedVersionPeer reviewe

    A Beam Test Study on the Bond Performance between Epoxy-Coated Reinforcement and Geopolymer Concrete

    No full text
    An epoxy-coated reinforcement geopolymer concrete structure with good durability and energy-saving properties can be formed by combining epoxy-coated reinforcement and geopolymer concrete. The bond strength is the precondition for the two to work together. In this paper, 13 beam specimens (11 epoxy-coated reinforcements and 2 ordinary deformed reinforcements) were designed to investigate the influence of the strength of geopolymer concrete, diameter of the reinforcement, bonding length and type of reinforcement on the bond performance between reinforcement and geopolymer concrete. The test results show that the ultimate bond strength of the epoxy-coated reinforcement (ECR) and geopolymer concrete decreased by 7.32% and 14.76%, respectively, when the rebar diameter increased from 14 mm to 16 mm and then to 20 mm. The ultimate bond strength between ordinary threaded reinforcement and geopolymer concrete was slightly higher than that between ECR and geopolymer concrete. When the length of the bond section is small or the concrete strength is low, the beam specimen is prone to the failure of the reinforcement pullout. The specimen with the larger reinforcement diameter is prone to concrete splitting failure. However, the specimens with medium bond length and small reinforcement diameter suffered from pull-out failure after concrete splitting. In this paper, based on the test data, the bond-slip constitutive model of ECR and geopolymer concrete was established, and the bond-slip curve obtained by this model was in good agreement with the measured curve. In addition, the calculation formula of the ultimate bond strength between ECR and geopolymer concrete was also proposed in this paper, which can provide theoretical reference for the engineering application of geopolymer concrete

    Virulence-Associated Genes of Calonectria ilicola, Responsible for Cylindrocladium Black Rot

    No full text
    The Cylindrocladium black rot caused by Calonectria ilicicola is a destructive disease affecting a broad range of crops. Herein, we study virulence-associated genes of C. ilicicolaCi14017 isolated from diseased peanut roots (Arachis hypogaea L.). Ci14017 was identified via phylogenetic analysis of the internal transcribed spacer region and standard Koch’s postulate testing. Virulence-associated genes were based on genome analyses and comparative analysis of transcriptome and proteome profiles of sensitive and resistant peanut cultivars. Ci14017 identified as C. ilicicola has a 66 Mb chromosome with 18,366 predicted protein-coding genes. Overall, 46 virulence-associated genes with enhanced expression levels in the sensitive cultivars were identified. Sequence analysis indicated that the 46 gene products included two merops proteins, eight carbohydrate-active enzymes, seven cytochrome P450 enzymes, eight lipases, and 20 proteins with multi-conserved enzyme domains. The results indicate a complex infection mechanism employed by Ci14017 for causing Cylindrocladium black rot in peanuts

    Numerical investigation on acoustic cavitation characteristics of an air-vapor bubble: Effect of equation of state for interior gases

    No full text
    The cavitation dynamics of an air-vapor mixture bubble with ultrasonic excitation can be greatly affected by the equation of state (EOS) for the interior gases. To simulate the cavitation dynamics, the Gilmore-Akulichev equation was coupled with the Peng–Robinson (PR) EOS or the Van der Waals (vdW) EOS. In this study, the thermodynamic properties of air and water vapor predicted by the PR and vdW EOS were first compared, and the results showed that the PR EOS gives a more accurate estimation of the gases within the bubble due to the less deviation from the experimental values. Moreover, the acoustic cavitation characteristics predicted by the Gilmore-PR model were compared to the Gilmore-vdW model, including the bubble collapse strength, the temperature, pressure and number of water molecules within the bubble. The results indicated that a stronger bubble collapse was predicted by the Gilmore-PR model rather than the Gilmore-vdW model, with higher temperature and pressure, as well as more water molecules within the collapsing bubble. More importantly, it was found that the differences between both models increase at higher ultrasound amplitudes or lower ultrasound frequencies while decreasing as the initial bubble radius and the liquid parameters (e.g., surface tension, viscosity and temperature of the surrounding liquid) increase. This study might offer important insights into the effects of the EOS for interior gases on the cavitation bubble dynamics and the resultant acoustic cavitation-associated effects, contributing to further optimization of its applications in sonochemistry and biomedicine

    A Novel Boost Conversion with High Voltage Ratio

    No full text

    Continuous-Wave Fiber Cavity Ringdown Pressure Sensing Based on Frequency-Shifted Interferometry

    No full text
    We present a continuous-wave fiber cavity ringdown (FCRD) pressure-sensing method based on frequency-shifted interferometry (FSI). Compared with traditional CRD or FCRD techniques, this FSI-FCRD scheme deduces pressure by measuring the decay rate of continuous light exiting the fiber ringdown cavity (RDC) in the spatial domain (i.e., the CRD distance), without the requirement for optical pulsation and fast electronics. By using a section of fiber with the buffer layer stripped in the fiber RDC as the sensor head, pressures were measured within the range from 0 to 10.4 MPa. The sensitivity of 0.02356/(km∙MPa) was obtained with a measurement error of 0.1%, and the corresponding pressure resolution was 0.05 MPa. It was found that the measurement sensitivity can be improved by enlarging the interaction length of the sensor head. The results show the proposed sensor has the advantages of simple structure, low cost, high sensitivity, and high stability in pressure detection
    corecore