236 research outputs found

    Two-Component, Four Reaction Domino Sequence toward Novel Tricyclic 1,4-dihydro-2H-benzo(f)sochromenes

    Get PDF
    The synthesis of complex molecules usuall

    Heat Transfer in Film Boiling of Flowing Water

    Get PDF

    Critical Heat Flux in Subcooled Flow Boiling of Water

    Get PDF

    Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction

    Full text link
    Click-Through Rate prediction is an important task in recommender systems, which aims to estimate the probability of a user to click on a given item. Recently, many deep models have been proposed to learn low-order and high-order feature interactions from original features. However, since useful interactions are always sparse, it is difficult for DNN to learn them effectively under a large number of parameters. In real scenarios, artificial features are able to improve the performance of deep models (such as Wide & Deep Learning), but feature engineering is expensive and requires domain knowledge, making it impractical in different scenarios. Therefore, it is necessary to augment feature space automatically. In this paper, We propose a novel Feature Generation by Convolutional Neural Network (FGCNN) model with two components: Feature Generation and Deep Classifier. Feature Generation leverages the strength of CNN to generate local patterns and recombine them to generate new features. Deep Classifier adopts the structure of IPNN to learn interactions from the augmented feature space. Experimental results on three large-scale datasets show that FGCNN significantly outperforms nine state-of-the-art models. Moreover, when applying some state-of-the-art models as Deep Classifier, better performance is always achieved, showing the great compatibility of our FGCNN model. This work explores a novel direction for CTR predictions: it is quite useful to reduce the learning difficulties of DNN by automatically identifying important features

    LFGCN: Levitating over Graphs with Levy Flights

    Get PDF
    Due to high utility in many applications, from social networks to blockchain to power grids, deep learning on non-Euclidean objects such as graphs and manifolds, coined Geometric Deep Learning (GDL), continues to gain an ever increasing interest. We propose a new L\'evy Flights Graph Convolutional Networks (LFGCN) method for semi-supervised learning, which casts the L\'evy Flights into random walks on graphs and, as a result, allows both to accurately account for the intrinsic graph topology and to substantially improve classification performance, especially for heterogeneous graphs. Furthermore, we propose a new preferential P-DropEdge method based on the Girvan-Newman argument. That is, in contrast to uniform removing of edges as in DropEdge, following the Girvan-Newman algorithm, we detect network periphery structures using information on edge betweenness and then remove edges according to their betweenness centrality. Our experimental results on semi-supervised node classification tasks demonstrate that the LFGCN coupled with P-DropEdge accelerates the training task, increases stability and further improves predictive accuracy of learned graph topology structure. Finally, in our case studies we bring the machinery of LFGCN and other deep networks tools to analysis of power grid networks - the area where the utility of GDL remains untapped.Comment: To Appear in the 2020 IEEE International Conference on Data Mining (ICDM

    Diffusion of AI Governance

    Get PDF
    Artificial intelligence (AI) has the potential to address social, economic, and environmental challenges. However, effective use of AI in organizations relies on the establishment of an AI governance framework. Although existing studies have discussed a variety of issues raised by AI-based systems and proposed AI governance frameworks to overcome those issues, organizations face challenges in adopting AI governance. Informed by innovation diffusion theory, this research evaluates the impact of internal and external influences on AI governance adoption between highly regulated and less regulated industries. We also assess the effect of adopting AI governance on organizational performance. Findings from this study will not only provide a nuanced understanding of the source of AI governance adoption, but also provide implications and guidelines for implementing AI governance in organizations

    Time-Aware Knowledge Representations of Dynamic Objects with Multidimensional Persistence

    Full text link
    Learning time-evolving objects such as multivariate time series and dynamic networks requires the development of novel knowledge representation mechanisms and neural network architectures, which allow for capturing implicit time-dependent information contained in the data. Such information is typically not directly observed but plays a key role in the learning task performance. In turn, lack of time dimension in knowledge encoding mechanisms for time-dependent data leads to frequent model updates, poor learning performance, and, as a result, subpar decision-making. Here we propose a new approach to a time-aware knowledge representation mechanism that notably focuses on implicit time-dependent topological information along multiple geometric dimensions. In particular, we propose a new approach, named \textit{Temporal MultiPersistence} (TMP), which produces multidimensional topological fingerprints of the data by using the existing single parameter topological summaries. The main idea behind TMP is to merge the two newest directions in topological representation learning, that is, multi-persistence which simultaneously describes data shape evolution along multiple key parameters, and zigzag persistence to enable us to extract the most salient data shape information over time. We derive theoretical guarantees of TMP vectorizations and show its utility, in application to forecasting on benchmark traffic flow, Ethereum blockchain, and electrocardiogram datasets, demonstrating the competitive performance, especially, in scenarios of limited data records. In addition, our TMP method improves the computational efficiency of the state-of-the-art multipersistence summaries up to 59.5 times

    SpOctA: A 3D Sparse Convolution Accelerator with Octree-Encoding-Based Map Search and Inherent Sparsity-Aware Processing

    Full text link
    Point-cloud-based 3D perception has attracted great attention in various applications including robotics, autonomous driving and AR/VR. In particular, the 3D sparse convolution (SpConv) network has emerged as one of the most popular backbones due to its excellent performance. However, it poses severe challenges to real-time perception on general-purpose platforms, such as lengthy map search latency, high computation cost, and enormous memory footprint. In this paper, we propose SpOctA, a SpConv accelerator that enables high-speed and energy-efficient point cloud processing. SpOctA parallelizes the map search by utilizing algorithm-architecture co-optimization based on octree encoding, thereby achieving 8.8-21.2x search speedup. It also attenuates the heavy computational workload by exploiting inherent sparsity of each voxel, which eliminates computation redundancy and saves 44.4-79.1% processing latency. To optimize on-chip memory management, a SpConv-oriented non-uniform caching strategy is introduced to reduce external memory access energy by 57.6% on average. Implemented on a 40nm technology and extensively evaluated on representative benchmarks, SpOctA rivals the state-of-the-art SpConv accelerators by 1.1-6.9x speedup with 1.5-3.1x energy efficiency improvement.Comment: Accepted to ICCAD 202

    Towards An Integrated Framework for Artificial Intelligence Governance

    Get PDF
    Artificial intelligence (AI) is being developed and adopted by many organizations throughout the world. As the potential of AI is being leveraged, many opportunities are being realized and continue to emerge. However, potential issues need to be addressed (Wang and Siau, 2019), such as ethical and legal concerns (Siau and Wang, 2020), making an AI governance framework paramount (Wang and Siau, 2018; Chen et al., 2022). To address this need, we propose an integrated AI governance framework based on an analysis of existing AI frameworks from different regions of the world (i.e., United States, European Commission, Singapore, and Hong Kong). More specifically, we systematically analyzed these frameworks, juxtaposed the frameworks to identify similarities and differences, which allowed us to identify the core components of AI governance, and proposed an integrated framework for AI governance that adheres to the characteristics of analytic theory (Gregor, 2006). The proposed AI governance framework encompasses both Strategic as well as Tactical and Operational components. There is an overarching theme that crosses the Strategic, Tactical, and Operational components that we termed Stakeholder Communication, Interaction, and Engagement. The integrated framework can be utilized by practitioners as guidelines for their AI endeavors and it can also serve as a foundation to guide future AI governance research. Moving forward, we plan to conduct case studies on AI governance frameworks in organizations and study their impacts on AI success. Future research also includes extending our proposed AI governance framework and fine-tuning it to fit unique organizational characteristics or specific sectors of industry. REFERENCES Chen, J., Eschenbrenner, B., Nah, F., Siau, K., and Qian, Y. 2022. “Diffusion of AI Governance,” Proceedings of the Seventeenth Midwest Association for Information Systems Conference, Omaha, Nebraska, May 16-17. Gregor, S. 2006. “The Nature of Theory in Information Systems,” MIS Quarterly (30:3), pp. 611-642. Siau, K., and Wang, W. 2020. “Artificial Intelligence (AI) Ethics: Ethics of AI and Ethical AI,” Journal of Database Management (31:2), pp. 74-87. Wang, W., and Siau, K. 2019. “Artificial Intelligence, Machine Learning, Automation, Robotics, Future of Work, and Future of Humanity – A Review and Research Agenda,” Journal of Database Management, (30:1), pp. 61-79. Wang, W., and Siau, K. 2018. “Artificial Intelligence: A Study on Governance, Policies, and Regulations,” Thirteenth Annual Midwest Association for Information Systems Conference, St. Louis, Missouri, May 17-18
    • …
    corecore