

W&M ScholarWorks

Dissertations, Theses, and Masters Projects

Theses, Dissertations, & Master Projects

2015

Two-Component, Four Reaction Domino Sequence toward Novel Tricyclic 1,4-dihydro-2H-benzo(f)sochromenes

Yuzhou Chen College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

Part of the Chemistry Commons

Recommended Citation

Chen, Yuzhou, "Two-Component, Four Reaction Domino Sequence toward Novel Tricyclic 1,4-dihydro-2Hbenzo(f)sochromenes" (2015). *Dissertations, Theses, and Masters Projects.* Paper 1539626996. https://dx.doi.org/doi:10.21220/s2-dhkf-h326

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

Two-Component, Four Reaction Domino Sequence toward Novel Tricyclic 1,4-dihydro-2*H*-benzo[*f*]isochromenes

Yuzhou Chen

Chenzhou, Hunan, China

Bachelor of Science, Beijing University of Chemical Technology, 2012

A Thesis presented to the Graduate Faculty of the College of William and Mary in Candidacy for the Degree of Master of Science

Chemistry Department

The College of William and Mary January, 2015

APPROVAL PAGE

This Thesis is submitted in partial fulfillment of the requirements for the degree of

Master of Science

YNZhon her Yuzhou Chen

Approved by the Committee, August 2014

Committee Chair Professor Robert J. Hinkle, Chemistry The College of William & Mary

Chancellor Professor and Department ChairOhristopher J. Abelt, Chemistry The College of William & Mary

Associate Professor Elizabeth J. Harbron, Chemistry The College of William & Mary

ABSTRACT

The synthesis of complex molecules usually requires multiple reactions and purification protocols for each step of the sequence. In efforts to reduce the formation of toxic byproducts, increase atom economy as well as efficiency of overall synthetic processes, we developed a one-pot, twocomponent reaction cascade between alkynediols and aldehydes to rapidly form tricyclic molecules. The reaction cascade between an alkynediol and aldehyde includes four different reactions: (a) intermolecular addition, (b) intramolecular alkynyl-Prins cyclization, (c) Friedel-Crafts arylation, and (d) dehydration to furnish tricyclic benzo[flisochromenes. The overall process can be initiated by Lewis or Brønsted acids and the effects of electron-donating and electron-withdrawing groups on the aromatic ring of the alkynediol were examined, as were aliphatic and aromatic aldehyde reaction partners. An alkynediol containing a defined stereocenter led to two diastereomeric products that were each enantiomerically-pure. The final benzo[f]isochromene products were characterized by IR and NMR spectroscopy, HPLC, GC and HRMS analyses and the structural assignment of two isochromenes was verified by X-ray crystallographic analysis.

TABLE OF CONTENTS

Acknowledge	ements	ii
List of Tables	5	iii
List of Figure	S	iv
Chapter 1.	Introduction 1.1 Comparison of Strategies toward Heterocycle Synthesis 1.1.1 Hetero Diels-Alder Reaction Towards (+)-Neopeltolide 1.1.2 Cyclic Ether Oxidation Towards (+)-Neopeltolide 1.1.3 Alkoxycarbonylation Towards (+)-Neopeltolide 1.1.4 Prins Cyclization Towards (+)-Neopeltolide 1.2 A Brief Review of Prins Cyclization 1.2.1 Development and Key Features about Prins Cyclization 1.2.2 Alkenyl Oxo-Prins Cyclization 1.2.3 Alkenyl Aza-Prins Cyclization 1.2.4 Alkynyl Oxo-Prins Cyclization	1 2 2 3 3 5 9 10 11
Chapter 2.	 Results and Discussion 2.1 General Information about Reactions 2.2 Optimization of Reactions toward Isochromenes 2.2.1 Ratios of Reaction Components 2.2.2 Choice of Acid Activator 2.3 Choice of Solvent 2.3 Effects of Substituents Groups in Alkynediol 2.4 Effects of Different Aldehydes 2.5 Synthesis of Isochromenes with Two Chiral Centers 2.6 Conclusions 	17 17 21 24 28 29 32 35 40
Chapter 3.	Experimental 3.1 General Information 3.2 Synthesis of Alkynediol 3.3 Synthesis of Isochromenes	42 42 43 49
References		71

ACKNOWLEDGEMENTS

This writer wishes to express her appreciation to Professor Robert J. Hinkle, under whose guidance this investigation was conducted, for his patience, guidance and criticism throughout the investigation. The author is also indebted to Professors Abelt and Harbron for their careful reading and criticism of the manuscript.

This writer thanks the National Science Foundation (CHE-1012305) as well as the William & Mary Office of Graduate Studies and Research for assistance and funding for this research.

LIST OF TABLES

1. Different equivalents of alkynediol, aldehyde and acid activators	22
 Brief survey of Lewis acid/Brønsted Acid activators during reaction towards 38b 	24
 Brief survey of Lewis acid/Brønsted Acid activators during reaction towards 38d 	26
4. Brief survey of different solvents	28
5. Synthesis of benzo[f]isochromene 38a	29
6. Synthesis of benzo[<i>f</i>]isochromene 38b	30
7. Synthesis of benzo[f]isochromene 38c	30
8. Synthesis of benzo[<i>f</i>]isochromene 38d	31
9. HPLC analysis of benzo[f]isochromenes with two chiral centers	39

LIST OF FIGURES

1.1 Structure of (+)-neopeltolide	1
1.2 Conformational analysis of oxocarbenium ions	7
1.3 Nitrogen-containing heterocycles	10
2.1 Silyl substituent effects on the relative-energy profile of oxonia-Cope rearrangement	∍ 33
2.2 Crystal structure of cis- fused diastereomer	37
2.3 Structure of trans- fused diastereomer	37

CHAPTER 1. INTRODUCTION

1.1 COMPARISON OF STRATEGIES TOWARD HETEROCYCLE SYNTHESIS

Heterocycles are found in a wide variety of natural products.¹ In particular, tetrahydrofurans (THFs), tetrahydropyrans (THPs), dihydropyrans (DHPs), thiapyrans and piperidine scaffolds are common heterocycles. Over the years, there have been a number of elegant methodologies toward the synthesis of those heterocycles,² among which the Prins-type cyclization has been proved to be a powerful synthetic strategy.³

For example, (+)-Neopeltolide (**Figure 1.1**) has an oxygen-containing heterocycle structure. It was isolated from a deep-sea Caribbean sponge by Wright and co-workers in 2007.⁴ One key structural moiety of (+)-neopeltolide is a 14-membered lactone ring, which also contains a tri-substituted tetrahydropyran ring. More than 20 papers were published related to the total synthesis or formal synthesis of Neopeltolide, applying various synthetic strategies to construct the tetrahydropyran ring, as shown below. However, many of the syntheses did rely upon the Prins cyclization to assemble the tetrahydropyran moiety.⁵

Figure 1.1. Structure of (+)-neopeltolide

1.1.1 HETERO DIELS-ALDER REACTION TOWARDS (+)-NEOPELTOLIDE

In 2008, Paterson and co-workers reported an approach towards the expected *cis*-tetrahydropyran **1** through a Jacobsen asymmetric hetero Diels– Alder reaction (eq 1),⁶ which is a [4+2] cyclization addition between aldehyde dienophile **2** and silyloxy diene ether **3**, in presence of catalytic amount of chiral tridentate chromium(III). This reaction affords complete control of stereochemistry at C3 and C7 in 78% yield; however it required 8 days to reach completion.

1.1.2 CYCLIC ETHER OXIDATION TOWARDS (+)-NEOPELTOLIDE

In 2010, Floreancig and coworkers examined preparing the tetrahydropyran core in (+)-neopeltolide (eq 2) via an oxidative process.⁷ They employed DDQ to oxidize the benzylic ether of the inert ether **4** to form an oxocarbenium ion **5**, which was attacked by the pendent acylated enol to form tetrahydropyran **6** with excellent stereocontrol.

1.1.3 ALKOXYCARBONYLATION TOWARDS (+)-NEOPELTOLIDE

In 2011, She and coworkers reported a palladium-catalyzed intramolecular alkoxycarbonylation to assemble the tetrahydropyran core of (+)-neopeltolide (eq 3).⁸ Treatment of chiral diol **7** with Pd(II), and Cu(II) in the presence of MeOH and carbon monoxide resulted in intramolecular alkoxycarbonylation to afford tetrahydropyranyl ester **8** in 83% yield. This step is quick and productive; however an enantiomerically-pure diol precursor was required to stereoselectively assemble *cis*-tetrahydropyran ring **8**.

1.1.4 PRINS CYCLIZATION TOWARDS (+)-NEOPELTOLIDE

In 2008, Maier and co-workers developed a TFA-mediated Prins cyclization to assemble the Pyran structure in (+)-neopeltolide (eq 4).⁹ The homoallylic alcohol **9** was treated with aldehyde **10** to yield the desired tetrahydropyran structure **12**. Another isomer other than the major product

(major/minor= 8:1) was also obtained. The oxocarbenium ion **11**, which adopts a chair-like conformation with the side chains and nucleophile oriented in equatorial positions, was generated as an intermediate.

Among the above syntheses (eqs 1-4), both Floreancig and Maier employed oxocarbenium ions as intermediates to furnish the tetrahydropyran core of (+)-neopeltolide with excellent stereocontrol. Strategies using oxonium ion intermediates in (+)-Neopeltolide syntheses were also applied by other investigators, such as Panek in 2007,¹⁰ Lee in 2008,¹¹ Kozmin in 2008,¹² Scheidt in 2009,¹³ and Florence in 2010.¹⁴

A wide variety of natural products have heterocycles in their structures, and a range of synthetic strategies have been developed to assemble the ether ring: (a) hetero Diels–Alder reaction, (b) oxidation, (c) ring closing metathesis, (d) alkoxycarbonylation, and (e) Prins cyclization. Prins cyclization, however, has been one of the most efficient approaches toward heterocycles, by allowing cylclization with excellent stereocontrol and flexible

4

substituent installation. The following section highlights a brief review of Prins cyclizations.

1.2 A BRIEF REVIEW OF PRINS CYCLIZATIONS

1.2.1 DEVELOPMENT AND KEY FEATURES OF PRINS CYCLIZATIONS

The Prins reaction was first reported by Dutch chemist Hendrik Jacobus Prins.¹⁵ The original reaction was published in 1919 (eq 5), in which styrene was reacted with paraformaldehyde to afford a diol in the presence of aqueous sulfuric acid.

Prins reactions can generate different products depending on the reaction conditions. Scheme 1.1¹⁶ shows a Prins reaction between an activated aldehyde and an alkene. This Prins reaction affords the initial intermediate cation **13**, which can further react with different reagents to produce various products. For example, the cationic intermediate **13** can react with aldehyde to form another oxocarbenium ion intermediate **14** to generate a 1,3-dioxane, **13** can be attacked by a nucleophile to afford substituted alcohol **15**, or proceed through an elimination reaction to generate a homoallylic alcohol **16**.

The prototypical Prins reaction is typically between aldehyde and alcohol to form an oxocarbenium ion intermediate, followed by the addition of

5

Scheme 1.1. Prins reaction and possible pathways

a π -nucleophile to generate oxygen-containing heterocycles. Also, analogous reactions are reported such as addition of nucleophile to iminium ions or thiocarbenium ions, all of which are accepted as Prins-type reactions.

The first selective synthesis of a tetrahydropyran by Prins cyclization was achieved by Hanschke in 1955 (eq 6).¹⁷ A homoallylic alcohol was reacted with ketone or aldehyde to quickly form the tetrahydropyran ring. Since then, the Prins cyclization has proved to be a valuable strategy towards heterocycles and has been widely used in natural products synthesis.

The configuration of the heterocycle is dependent on the geometry of the oxocarbenium ion intermediate (**17** or **18**). Houk and coworkers published their conformational analysis of oxonium ions by *Ab initio* molecular orbital

calculations in 1991.¹⁸ Their study found that the *cis* isomer of oxocarbenium ion, **17**, was 2.0 kcal/mol less stable than the *trans* isomer, **18** (Figure 1.2), which indicates that the C=O bond has a preference for the *E*- geometry over *Z*-geometry.

Figure 1.2. Conformational analysis of oxocarbenium ions

As illustrated before, the π -nucleophile component would attack the oxocarbenium ion intermediate **19** in the Prins cyclization (**Scheme 1.2**). Once the intermediate oxocarbenium ion is formed, there are two possible pathways including *endo* and *exo* additions. For homoallylic alcohols, the Prins-type cyclization favors 6-*endo*-addition to tetrahydropyrans over 5-exo-addition to tetrahydrofurans.¹⁹ During the *endo*-addition, substituents tend to

occupy the pseudoequatorial positions adjacent to oxygen in chair-like conformation **20** to produce *cis*-fused product **21**.²⁰ This overall model for cyclization is useful in designing the syntheses of poly-substituted tetrahydropyrans.

Generally, the Prins cyclization involves the following components: an electrophilic ion, a π -nucleophile, an acid promoter and a nucleophile to terminate the cyclization. Over the years, Prins cyclization has been significantly broadened, and variations were developed:

The electrophilic component.

The oxocarbenium ion, which can be generated from a homoallylic alcohol, homopropargylic alcohol, acetal, mixed acetal, α -acetoxy ether, enol ether, esters, and by some oxidation methods, is the typical electrophile. The aza-Prins cyclization, which uses an iminium or *N*-acylimin-ium ion as the electrophile, and the thia-Prins cyclization, which uses thiol compounds as precursors, are analogous Prins-type reactions.

The π -nucleophile.

Various π -nucleophiles can be employed in the Prins reaction, including alkynes, alkenes, aromatic rings, allylsilanes, and enolsilanes. The silylated nucleophiles are used because of the stabilizing influence of the silane on the cationic intermediates generated during the reaction.^{27d,32}

8

Acid activators.

Both Lewis and Brønsted acids are suitable for Prins cyclizations. Lewis acids such as FeX₃, SnX₄, TFA, TMSOTf, BF₃•OEt₂ and In(OTf)₃ are commonly used; Brønsted acids such as trifluoromethanesulfonic acid (TfOH) and camphorsulfonic acid (CSA) are also used to activate Prins reactions.

Termination nucleophiles.

The nucleophiles added to terminate Prins cyclizations include good nucleophiles such as halogens, allylsilanes, silyl acetates, and trimethylsilyl halides. Neutral molecules have also been used in tandem processes, and these processes include Prins/Friedel-Crafts and Prins/ Ritter reactions.

1.2.2 ALKENYL OXO-PRINS CYCLIZATION

The oxocarbenium ion is the most commonly used electrophilic component in Prins cyclization. It can be further reacted with an alkene in an alkenyl-Prins cyclization. Maier and co-workers' synthesis towards (+)neopeltolide (eq 4) is an example of alkenyl oxo-Prins cyclization. As previously mentioned, this type of Prins cyclization favors 6-*endo*-addition to tetrahydropyran over 5-*exo*-addition to tetrahydrofurans. The 6-*endo*-addition to tetrahydropyrans prefers a chair-like conformation, an *E*-geometry of carbon-oxygen double bond, and equatorial orientation of substituents adjacent to oxygen, leading to a *cis* relationship between substituents adjacent to oxygen in tetrahydropyrans.

1.2.3 ALKENYL AZA-PRINS CYCLIZATION

Nitrogen-containing heterocycles are important subunits of many pharmaceutical products.²¹ For example, piperidine, pyrrole, indole, quinoline, decahydroquinoline and octahydroindole (**Figure 1.3**) are common nitrogencontaining heterocycles, and are core motifs of many natural products.

Figure 1.3. Nitrogen-containing heterocycles

The aza-Prins reaction is an efficient synthetic way to produce nitrogen-containing heterocycles. The aza-Prins reaction can be initiated from iminium ion, acyliminium ion and *N*-acyloxyiminium ion. The *N*-acyliminium ion chemistry is also known as a Mannich-type condensation, which is widely used to install substituents onto amines.²² Similar to the oxo-Prins reaction, the aza-Prins cyclization involves intermolecular or intramolecular attack of a

nucleophile onto an *N*-acyloxy or *N*-substituted iminium ion generated in the presence of Lewis acid or protic acid.

Padron and coworkers²³ investigated the iron(III) halide-promoted aza-Prins cyclization between γ , δ -unsaturated tosylamines **22** and aldehyde **23**. They found that this aza-Prins reaction generated the *trans*-diastereomer **24a** as the major product (**Scheme 1.3**). The *E*-iminium intermediate was found to be more stable than the *Z*-iminium intermediate when R is an alkyl group; the opposite result is observed when R is an aromatic group. In both cases, the

most stable isomer is a result of *endo* attack of the alkene on the tosyliminium ion; this is the same rule as observed in the oxo-Prins reaction.

1.2.4 ALKYNYL OXO-PRINS CYCLIZATION

In addition to the alkenyl Prins cyclization which utilizes a phenyl group or alkene as a nucleophile, the alkynyl Prins reaction uses an alkyne as a nucleophile. The alkynyl oxo-Prins reaction plays an important role in accessing dihydropyrans (DHPs), or poly-substituted THFs^{24,25a}. Research on the oxo-alkynyl Prins reaction revealed a number of trends:

- Halogen exchange occurred with halogenated solvents in Fe(III)-promoted Prins cyclizations.²⁴
- 2. The 2-oxonia-[3,3]-sigmatropic rearrangement competes with direct attack of the alkyne and alkenyl cation formation.²⁶
- The alkynyl-Prins reaction is an efficient method to make polysubstituted tetrahydrofurans directly. ²⁵

1. Halogen exchange with halogenated solvents in iron(III) promoted Prins cyclizations²⁴.

Padron's group published a paper in 2007^{24b} introducing a Prins-type cyclization between homopropargylic alcohols or homopropargyl tosyl amines and aldehydes, in presence of iron (III) halides. They found an unexpected halogen abstraction by vinyl cation **25** when FeX₃ or InX₃ was used as the Lewis acid and CH₂X₂ as the solvent (eq 9). As a result, they obtained a mixture of **26** and **27** in FeBr₃ promoted Prins cyclization in CH₂Cl₂. They also

found that stoichiometric amount of iron (III) halides are required to generate significant amounts of halide exchange.

2. The 2-oxonia-[3,3]-sigmatropic rearrangement is the main process competing with Prins cyclization.²⁶

The oxonia-Cope rearrangement is the main reaction competing with cyclization according to studies by several research groups (**Scheme 1.4**).^{26a,27} The relative stabilities of intermediates from both Prins cyclization and oxonia-Cope rearrangement were studied by Padron and coworkers.^{27d} In some Prins cyclizations, the oxonia-Cope rearrangement occurred only when oxocarbenium ion **29** was either lower in energy than the initial ion **28**, or if the ions were of similar energies and only a small transition state energy barrier was present between the forms.

Scheme 1.4. Prins cyclization and oxonia-Cope rearrangement

There are several factors affecting the stability of **28** and **29** such as the nature of R_1 , R_3 and R_4 groups. Padron and coworkers' study revealed several effects related to substituents: (a) as the bulkiness of R_4 group increases, the Prins cyclization is more favorable than oxonium-[3,3]sigmatropic rearrangement; (b) when TMS group was introduced at R_3 position, the oxonium-[3,3]-sigmatropic rearrangement was less favored; (c) electron-withdrawing groups in R_1 destabilize the allenic oxocarbenium ion **29**.

3. The alkynyl-Prins reaction is an efficient method to afford polysubstitutes tetrahydrofurans.²⁵

A variety of natural products such as (+)-Citreoviral, (\pm)-Kumausallene and Cladiellin diterpenes have an oxacyclic motif, ²⁸ many of which are polysubstituted tetrahydrofurans. In order to prepare the racemic or optically pure products, some groups have been putting efforts toward utilizing an alkenyl Prins cyclization followed by Pinacol rearrangement of the incipient cation (**Scheme 1.5**).²⁹

Scheme 1.5. Pinacol-terminated Prins cyclization

The alkynyl Prins cyclization, however, can be used for synthesis of tetrahydrofurans without a Pinacol rearrangement. The alkynyl Prins cyclization affords polysubstituted tetrahydrofurans by 5-*exo* cyclization to THFs rather than 6-*endo* cyclization to DHPs. For example, Cho and coworkers reported a Prins cyclization for the stereoselective synthesis of 2,5-*cis*-disubstituted 3-vinylidene tetrahydrofurans (eq 8).^{25 a}

In summary, the alkynyl Prins cyclization has emerged as a powerful tool to the synthesis of polysubstituted heterocycles with six- or fivemembered rings in moderate to high yields with excellent stereoselectivity.

CHAPTER 2. RESULTS AND DISCUSSION

2.1 GENERAL INFORMATION ABOUT REACTIONS

To expand the scope of Prins-type reactions, Hinkle and Lewis³⁰ reported a reaction cascade involving an alkynyl-Prins cyclization, Friedel-Crafts arylation, and dehydration/aromatization toward tricyclic isochromenes (eq 9).

Based on the moderate yields obtained in the above domino reaction,³⁰ more research was conducted to increase yields and explore the mechanism. In order to further study the intramolecular Friedel-Crafts reaction to the alkenyl cation that is presumably generated during the alkynyl-Prins cyclization, both electron donating and withdrawing groups were introduced into the aromatic moiety of alkynediol **37**. To further understand other parts of the sequence and optimize the final yields, the effects of the following were also investigated: (a) both aromatic and aliphatic aldehydes were employed as the second reactant; (b) different Lewis acid/Brønsted acid activators were surveyed; (c) various ratios of reaction components were investigated; and (d) solvent effects were evaluated. **Scheme 2.1** outlines the entire synthetic route

from commercially available ester **32** or alcohols **33a**, **33b** and **33d** toward the final tricyclic benzo[*f*]isochromenes **38**.

Scheme 2.1. Synthesis of different tricyclic benzo[f]isochromenes.ª

^a Reagents and conditions: (a) DIBAL-H, THF, r.t., then H_2O , 75%; (b) 2-lodoxybenzoic acid, MeCN, 80°C, 100% by ¹H-NMR; or Dess-Martin periodinane reagent, CHCl₃, 0°C to r.t., 82-86%; or Dess-Martin periodinane reagent, DMF, 0°C to r.t., 77%; (c) TMS-acetylene, *n*-BuLi, THF, then NH₄Cl, -78°C to r.t., 71-88%; (d) K₂CO₃, THF, MeOH, H₂O, r.t., 74-98%; (e) *n*-BuLi, 1sobutylene oxide, BF₃•Et₂O, THF, then NH₄Cl, -78°C, 30-51%; (f) Aldehyde, Lewis acid/Bronsted acid, CH₂Cl₂, -78°C to r.t., 15-89%.

The construction of the tricyclic benzo[*f*]isochromenes **38a**, **38b** and **38d** was started from alcohols **33a**, **33b** and **33d**, respectively. Tricyclic benzo[*f*]isochromene **38c** was obtained from commercially available ester **32**, which was reduced with DIBAL-H to afford alcohol **33c** in 75% yield. All alcohols **33a-d**, upon treatment with oxidizing agents such as 2-lodoxy-

benzoic acid (IBX) or Dess-Martin periodinane (DMP), generated the corresponding aldehydes **34a-d** in excellent yields. However, these aldehydes are not thermally stable and tend to decompose on silica gel during attempted purification by flash chromatography. Since oxidation of alcohols **33a-d** using IBX afforded aldehydes **34a-d**, which appeared pure by both TLC and ¹H-NMR spectroscopy, the crude aldehydes were directly reacted with TMS-acetylide to afford TMS alkynols 35a-d in good yields. Subsequent desilylation of **35a-d** using 3.0 equivalents of K₂CO₃ gave propargylic alcohols 36a-d in excellent yield. The alkynediol precursors 37a-d were synthesized from **36a-d** by treatment with *n*-BuLi to convert **36a-d** into dianions, which were then used to ring open isobutylene oxide in the presence of BF₃•Et₂O. Different aldehydes were then employed to react with alkynediols **37a-d** to afford tricyclic benzo[*f*]isochromenes **38a-d** as final products in moderate to high yields. The final reaction (conditions f), which includes three discrete chemical steps, is shown in Scheme 2.2.

Scheme 2.2. Detailed steps of reaction f towards benzo[f]isochromene 38b.

In alkynediol **37b**, the tertiary alcohol would attack the activated aldehyde to generate hemiacetal intermediate **I**, followed by proton transfer to produce another hemiacetal, **II**. Elimination then affords the oxocarbenium ion intermediate **III**, which is attacked by the tethered alkyne (alkynyl-Prins reaction) to generate the cationic dihydropyran intermediate **IV**. The resulting dihydropyranyl cation **IV** is then attacked by the pendant aryl ring to produce arenium ion intermediate **V** through Friedel-Crafts arylation. At last, the final benzo[*f*]isochromene **38b** was formed after dehydration and re-aromazation.

Studies revealed that oxonia-Cope rearrangement can be the main competitive reaction with the alkynyl-Prins cyclization.^{31,27d,32} A proposed 2-oxonia-[3,3]-sigmatropic rearrangement from intermediate **III** is shown in eq 10, which would generate allenyl cation intermediate **VI**. The competition

between Prins cyclization and oxonia-Cope rearrangement is dependent on the relative stabilities of intermediates **III** and **VI**. As discussed on pages 14 of the introduction, several factors affecting alkynyl Prins cyclization were studied by Padron and coworkers,^{27d,32}. In this thesis, experiments exploring electronic effects on the Friedel-Craft arylation and Prins cyclization were both conducted.

2.2 OPTIMIZATION OF REACTIONS TOWARD ISOCHROMENES

2.2.1 RATIOS OF REACTION COMPONENTS

As a result of the previous paper,³⁰ 10 mol% excess of $BF_3 \cdot Et_2O$ and 20 mol% excess of aldehyde over alkynediol provided the best yields. However, when electron donating or withdrawing substituents were introduced into alkynediol precursor, the previous reaction conditions led to low yields (eq 9). In order to explore the optimal reaction protocol for each of the benzo[*f*]isochromenes, experiments using various equivalents of alkynediol, aldehyde and $BF_3 \cdot Et_2O$ were conducted, in which **37a**, **37b** and **37d** were used as starting alkynediols (**Table 1**).

 Table 1. Different equivalents of alkynediol, aldehyde and acid activators.

R ₂ R ₁ 53a, R ₁ =H 53b, R ₁ =H 53d, R ₁ =M	R_{3} OH OH + H, R ₂ =MeO, R ₃ =H H, R ₂ =Cl, R ₃ =H Me, R ₂ =H, R ₃ =Me	$Br \xrightarrow{O} H \xrightarrow{BF_3 \cdot Et_2O} R$	Provide the second seco
Entry	Product	Alkynediol / aldehyde / BF ₃ •Et ₂ C	Yield(%) ^a
1		1.0 / 1.2 / 1.1	22
2		1.0 / 1.2 / 2.0	26
3		1.0 / 1.4 / 3.0	29
4		1.0 / 2.0 / 5.0	23
5	37a ^b	1.0 / 1.2 / 3.0	22
6	Cl	1.0 / 1.2 / 1.1	24
7		1.0 / 1.4 / 1.4	21
8		1.0 / 1.4 / 3.0	61
9	⁺ O ⁺ R₄	1.0 / 2.0 / 5.0	49
10	37b ^{b,c}	1.0 / 1.5 / 3.0	47
11		1.0 / 1.2 / 1.1	53
12		1.0 / 1.2 / 2.0	49
13		1.0 / 1.4 / 3.0	77
14	∽/`Ó`R₄ 37d ^d	1.0 / 1.8 / 5.0	50

a. Yields are based on GC analysis using undecane as an internal standard.

b. Reactions were conducted under argon at 0.25 M in Alkynediol.

c. Selected results among 13 different reaction schemes.d. Reactions were conducted under argon at 0.10 M in Alkynediol.

Generally, a large excess of Lewis acids can be used to activate aldehydes. However, too much of a Lewis acid can result in dehydration products of the alkynediol (eq 11) as well as aldol products from enolizeable aldehydes such as phenylpropionaldehyde (eq 12). Therefore, a compromise between aldehyde activation and side-reactions must be reached. For the reaction of alkynyediols **37a**, **37b** and **37d** with *p*-bromobenzaldehyde, the amount of excess BF₃•Et₂O was substrate dependent. For all reactions in **Table 1**, the aromatic aldehyde *p*-bromobenzaldehyde was used so that no aldol product was possible.

In some cases, especially when 1.2 equivalents of aldehyde was used with **37a**, 2.0 equiv of BF₃•Et₂O resulted in the best yield, but more than 2.0 equiv of Lewis acid tended to decrease the yield (see entries 2 and 5). When conducting the cascade reaction with **37d**, however, more than 1.1 equiv BF₃•Et₂O, led to lower yields (entries 11 and 12). A number of other factors such as the amount of alkynediol, aldehyde and acid activator, pK_a of acid activator, temperature, reaction time, and type of solvent can also affect the competition between productive cascade reaction and degradation of starting material(s). In summary, 40 mol% excess of aldehyde and 200 mol% excess of BF₃•Et₂O gave the highest yield for all of the alkynediols shown in **Table 1**.

23

2.2.2 CHOICE OF ACID ACTIVATOR

Several different Lewis and Brønsted acids were examined for reaction of alkynediol **37b** and *p*-bromobenzaldehyde towards **38b** (**Table 2**), as well as reaction of alkynediol **37d** and *p*-bromobenzaldehyde to form benzo[*f*]isochromene **38d** (**Table 3**).

Table 2. Brief survey of Lewis acid/Bronsted acid activators during reactions toward 38b.

CI

~

СІ ОН 37Ь	$ \begin{array}{c} OH \\ + Br \\ H \\ H \\ H \\ $	Acid 38b Br
Entry	Lewis Acid/Bronsted Acid	Yield(%) ^{a,b}
1	BF ₃ •Et ₂ O	61
2	TfOH	31
3	TfOH ^c	6
4	pTSA	14
5	TMSOTf	30
6	TMSBr	7
7	Cu(OTf) ₂	3

^a Reactions were conducted under argon at 0.25 M in Alkynediol **37b** using 1.4 equiv. of aldehyde and 3.0 equiv. of corresponding Lewis acid/Bronsted acid unless specified.

^b Yields are based on GC analysis using undecane as an internal standard.

^c Reaction was conducted using 0.5 equiv. of TfOH.

The chloride substituent in alkynediol **37b** is an *ortho/para-* director, and it has deactivating effect on the meta- position where the Friedel-Crafts arylation proceeds (**Scheme 2.2**, intermediate **IV**). According to **Table 1**, 1.4 equivalent of aldehyde and 3.0 equivalent of $BF_3 \cdot Et_2O$ (entry 8) gave the highest yield (61%). Therefore, the same ratio of aldehyde and different acid activators were applied toward **38b** (**Table 2**). Both stoichiometric (entry 2) and catalytic (entry 3) amounts of trifluoromethanesulfonic acid (TfOH) were used in the reaction. The stoichiometric amount of superacid TfOH gave relatively clean reaction mixtures after workup, but very moderate yields. whereas reaction using catalytic quantities of TfOH mostly resulted in recovered starting materials. When the weaker acid pTSA was used (entry 4), the reaction mixture showed multiples products by TLC analysis and only afforded the expected isochromene in 14% yield. The known Lewis acid TMSOTf (entry 5) was applied during the reaction cascade but also resulted in a moderate 30% yield. TMSBr (entry 6) was also employed to initiate the Prins cyclization, but only 7% yield was obtained. It is important to note that TMSBr provides a nucleophilic anion Br, which could attack the carbocation in dihydropyran intermediate IV in competition with the Friedel-Crafts arylation. The TLC of the reaction (entry 6) showed two obvious spots including isochromene product, but no pure brominated dihydropyran product was isolated or characterized. When using Cu(OTf)₂ (entry 7) as Lewis acid activator, only 3% yield was obtained. In summary, BF₃•Et₂O (entry 8) gave the highest yield (61%) during this reaction cascade.

25

The dimethyl substituents in alkynediol **37d** have electron donating effect on the position where the Friedel-Crafts arylation proceeds (**Scheme 2.2**, intermediate **IV**). In **Table 3**, various Lewis and Brønsted acids were used to promote the reaction cascade. The catalytic amount of TfOH (entry 3) gave higher yield than a stoichiometric amount (entry 2), which means that

Table 3. Brief survey of Lewis acid/Bronsted acid activators in reactions toward 38d.

OH 37d	H + Br + B	Acid Acid 38d Br
Entry	Lewis Acid/Bronsted Acid	Yield(%) ^{a,b}
1	BF ₃ •Et ₂ O	49
2	TfOH	27
3	TfOH ^c	31
4	TFA ^d	trace
5	In(OTf) ₃ ^e	19
6	TMSOTf	44
7	BF ₂ •OTf•Et ₂ O	54
8	HCI in Et ₂ O	trace
9	BF₃•Et₂O, TMSBr ^f	23

^a Reactions were conducted under argon at 0.10 M in alkynediol **37d** using 1.2 equiv. of aldehyde and 2.0 equiv. of corresponding Lewis acid/Bronsted acid unless specified.

^b Isolated yields after silica gel chromatography.

^c Reaction was conducted using 0.1 equiv. of TfOH.

^d Reaction was conducted using 10.0 equiv. of TFA.

^e Reaction was conducted using 0.1 equiv. of In(OTf)₃.

^f Reaction was conducted using 2.0 equiv. of BF₃•Et₂O and 1.2 equiv. of TMSBr.

TfOH can serve as a catalyst to promote Prins cyclization. When adding TFA (entry 4) or HCI (entry 8) to the reaction, starting materials were mostly recovered and little expected product was observed according to GC analysis. In contrast, a catalytic amount of $In(OTf)_3$ (entry 5) afforded the expected product, but only in 19% yield.

Combinations of acids can also be effective. For instance, Aggarwal and coworkers³³ conducted research on a combination of BF₃•OEt and TMSOTf to afford a more powerful Lewis acid BF₂•OTf•OEt₂. Inspired by their research, BF₃•OEt and TMSOTf were combined in 1.0:1.0 ratio to form BF₂•OTf•OEt₂ (entry 7) to initiate the cascade sequence; the desired product was obtained in 54% yield. This combination Lewis acid provided higher yields than either BF₃•OEt₂ (entry 1) or TMSOTf alone (entry 6). Since no characterization methods were used to verify the structure of BF₂•OTf•OEt₂, it is, however, difficult to ensure formation of such a Lewis acid.

When the reaction sequence was initiated with 2.0 equiv. of BF₃•OEt and 1.2 equiv. of TMSBr (entry 9), a lower yield (23%) was observed compared to reaction using 2.0 equivalents of BF₃•OEt₂ (entry 1, 49% yield). The reduced yield could support the assumption that Br⁻ attacks the cation in dihydropyran intermediate **IV** to afford a brominated dihydropyran instead of the desired isochromene that would result from Friedel-Crafts arylation (entry 6, **Table 2**). Due to factors including good yields, low cost, simple reaction

27

mixtures, and easy operational conditions, BF₃•OEt₂ was employed as the Lewis acid activator in remaining reactions described.

2.2.3 CHOICE OF SOLVENT

In order to determine the appropriate solvent for the reaction cascade towards benzo[*f*]isochromenes, aprotic solvents including Et₂O and THF were also evaluated during reaction and the results are shown in **Table 4**.

Table 4. Brief survey of different solvents.

38b and 38d

37d, R_1 =Me, R_2 =H, R_3 =Me

Entry	Product	Solvent	Yield(%) ^a
1	38b	CH ₂ Cl ₂ ^b	61 ^d
2	38b	THF ^b	16
3	38d	Et ₂ O ^c	36
4	38d	CH ₂ Cl ₂ ^c	49

a. Isolated yields after silica gel chromatography unless otherwise noted.

b. Reaction was conducted under argon at 0.25 M in Alkynediol **37b** using 1.4 equiv. of aldehyde and 3.0 equiv. of BF₃*Et₂O.

c. Reaction was conducted under argon at 0.10 M in Alkynediol **37d** using 1.2 equiv. of aldehyde and 2.0 equiv. of BF₃*Et₂O.

d. Yield is based on GC analysis using undecane as an internal standard.

Although using THF (entry 1) and Et₂O (entry 2) can effectively avoid

the halogen exchange described in the introduction, use of these solvents
resulted in lower yield than reactions using CH_2CI_2 as solvent. Based on the high yields and no evidence of halogen exchange in the reactions, CH_2CI_2 was found to be the most appropriate solvent for the reaction cascade in this thesis.

2.3 EFFECTS OF SUBSTITUENTS IN ALKYNEDIOL

Alkynediols, including **37a-d**, were reacted with various aldehydes to afford different benzo[*f*]isochromenes. The results are shown in **Tables 5-8**.

Table 5. Synthesis of benzo[f]isochromene 38a.

^a Reactions were conducted under argon at 0.25 M in alkynediol **37a** using 1.4 equiv. of aldehyde and 3.0 equiv. of BF₃•Et₂O.

^b Isolated yields after silica gel chromatography.

Table 6. Synthesis of benzo[f]isochromene 38b.

^a Reactions were conducted under argon at 0.25 M in alkynediol **37b** using 1.4 equiv. of aldehyde and 3.0 equiv. of BF₃•Et₂O.

^b Isolated yields after silica gel chromatography unless noted.

^c A 2:1 mixture of diastereomers was obtained in a combined yield of 36%.

^d Yield was obtained by GC analysis using undecane as internal standard.

Table 7. Synthesis of benzo[f]isochromene 38c.

Entry	Product	Aldehyde (R)	Yield(%) ^{a,b}
1	38c-1	PhCH ₂ CH ₂ -	57
2	38c-2	p-NO ₂ -Ph-	46
3	38c-3	<i>p</i> -Br-Ph-	62
4	38c-4	p-CH ₃ -Ph-	74

a. Reactions were conducted under argon at 0.10 M in alkynediol **37c** using 1.4 equiv. of aldehyde and 3.0 equiv. of BF₃• Et₂O.

b. Isolated yields after silica gel chromatography.

a. Reactions were conducted under argon at 0.10 M in alkynediol **37d** using 1.4 equiv. of aldehyde and 3.0 equiv. of BF₃• Et₂O.

b. Isolated yields after silica gel chromatography.

Both aliphatic and aromatic aldehydes were reacted with different alkynediols to furnish various benzo[*f*]isochromenes. Phenylpropionaldehyde is an aliphatic aldehyde, which was used to react with each of the four alkynediols. As a result, when substituents in the alkynediol have more electron donating effect on the position where the Friedel-Crafts arylation proceeds (**Scheme 2.2**, intermediate **IV**), more expected benzo[*f*]isochromene products were generated (entry 1 in **Table 5** has 15% yield, entry 4 in **Table 6** has 38% yield, entry 1 in **Table 7** has 57% yield and entry 1 in **Table 8** has 78% yield). For aromatic aldehydes (e.g. *p*-nitrobenzaldehyde and *p*-bromobenzaldehyde), the benzo[*f*]isochromene yields were higher when substituents in the alkynediol have more electron donating effect on the position where the Friedel-Crafts arylation proceeds (**Scheme 2.2**, intermediate **IV**). The same results were obtained when using other aldehydes listed in **Table5-8**.

This is likely because the Friedel-Craft arylation is more efficient when a more electron-rich aryl moiety attacks dihydropyranyl intermediate **IV**. Moreover, electron donating groups in alkynediol **37** (e.g., CH₃) can better stabilize the cation dihydropyran intermediate **IV**, resulting in decreasing the possibility of oxonia-Cope rearrangement to allenic structure **VI** (eq 10). In summary, more electron rich substituents in the alkynediol can effectively increase the yield.

2.4 EFFECTS OF DIFFERENT ALDEHYDES

As the results in **Table 6** show, when R becomes more electron-rich, more desired benzo[*f*]isochromene products was isolated. Similar results are shown in **Tables 5**, **7** and **8**.

As previously discussed, Padron showed that the oxonia-[3,3]sigmatropic rearrangement can be competitive with Prins cyclization. The relative stabilities of oxocarbenium ion intermediate III and allenyl cation intermediate **VI** are crucial to determine which of the two pathways is more favorable. Padron and coworkers^{27d,32} found that TMS group can lead to a less-favored oxonia-Cope rearrangement (**Figure 2.1**).

32

Figure 2.1. Silyl substituent effects on the relative-energy profile of oxonia-Cope rearrangement^{27d,35}

Although the energy gap between oxocarbenium ion intermediate **III** and allenyl cation intermediate **VI** has not been calculated, results from **Tables 5-8** reveal that more electron-rich aldehydes result in higher yields of benzo[*f*]isochromenes. For example, in **Table 8**, yields increase from 53% to 89% (entry 2 to entry 4) as the aldehydes become more electron donating. That result is because electron rich aldehydes can better stabilize the oxocarbenium ion intermediate **III** (**Scheme 2.2**) by donating electrons to the carbon in O=C bond. Also **Tables 5-8** reveal that most aryl 2,4-dihydro-1*H*benzo[*f*]isochromenes were isolated in higher yield than alkyl 2,4-dihydro-1*H*- benzo[*f*]isochromenes. For example, in **Table 6**, alkyl isochromenes (entries 1-4) were only isolated in 27% to 39% yields, whereas the aryl substituted isochromenes were obtained in 45% to 61% yields (entries 5-7). The reasons can be summarized as follows. First, alkyl 2,4-dihydro-*1H*-

benzo[f]isochromenes (e.g., **38b-4**, **38c-1** and **38d-1**) are easily oxidized to lactones as described by Hinkle and Lewis.³⁰ Although the lactone structures were not observed for the alkyl 2,4-dihydro-*1H*-benzo[f]isochromenes in the current work, there are other side products formed during the cascade that were not isolated. Secondly, the oxocarbenium ion intermediate **III (Scheme 2.2**) can be better stabilized by an aromatic substituent that is conjugated with the O=C bond. Thirdly, aldol product **40** from enolizeable phenylpropionaldehyde was isolated (eq 12), and aldol reactions with enolizeable aldehydes would decrease the yields of alkyl 2,4-dihydro-*1H*benzo[f]isochromenes.

Tables 7 and **8** do not show a significant difference between alkyl 2,4dihydro-*1H*-benzo[*f*]isochromenes and phenyl 2,4-dihydro-*1H*benzo[*f*]isochromenes. It is possible that the mono-methyl or di-methyl groups in alkynediol can better stabilize intermediate **V** (**Scheme 2.2**) as discussed above in section 2.3. As a result, the Prins cyclization is more favorable and fewer side products would be generated. Therefore, when comparing phenylpropionaldehyde and *p*-nitrobenzaldehyde, the more electron-rich aldehyde can stabilize the initial oxocarbenium ion, **III** and reduce the propensity for oxonia-Cope rearrangements.

As unpublished research by Professor Andrew Harned at the University of Minnesota has revealed, the Prins cyclization/Friedel-Crafts arylation may well be concerted reactions in which no intermediate such as **IV** is involved. When using strongly electron-withdrawing *p*-nitrobenzaldehyde during the cascade sequence (entry 2 in **Table 5**, entry 5 in **Table 6**, entry 2 in **Table 7** and entry 2 in **Table 8**), the oxocarbenium ion intermediate **III** (eq 10) would be destabilized by the electron-withdrawing nitro group whereas an oxocarbenium ion (e.g., **VI** in eq 10) resulting from oxonia-Cope rearrangement would be stabilized. However, methyl substituted isochromenes (**38d-2** and **38c-2**) were isolated in higher yields than chloride or methoxy substituted isochromenes (**38b-5** and **38a-2**); these results support the idea that the alkynyl-Prins and Friedel-Crafts reactions are concerted.

2.5 SYNTHESIS OF ISOCHROMENES WITH TWO CHIRAL CENTERS

In order to further study the stereoselectivity of this reaction cascade, both racemic and chiral versions of 1-phenylhept-3-yne-2,6-diol (**41** and **43**,

35

respectively) and *p*-tolualdehyde were employed to generate isochromenes with two chiral centers.

At first, the racemic version of 1-phenylhept-3-yne-2,6-diol **41** was used (eq 13) and afforded 2-methyl-4-(*p*-tolyl)-1,4-dihydro-*2H*-benzo[*f*]-isochromenes **42a** and **42b** in 81% combined yield.

Interestingly, both *cis*- (**42a**) and *trans*- (**42b**) fused tricyclic products were obtained, and there was a slight preference for the *cis*- diastereomer (*cis:trans* = 1.3:1.0). After separation of the diastereomers by column chromatography, the structure of the *cis*-fused diastereomer (**42a**) was confirmed by X-ray crystallographic analysis (**Figure 2.2**), whereas the structure of *trans*- fused diastereomer (**42b**) was confirmed by ¹H-NMR, ¹³C-APT, ¹³C-DEPT, g- COSY, HSQCAD, NOESY1D analyses and highresolution mass spectrometry (**Figure 2.3**).

(S,R)42a and (R,S)42a

Figure 2.2 Crystal structure of cis- fused diastereomer.

(S,S)42b and (R,R)42b

Figure 2.3. Structure of *trans*- fused diastereomer.

(*6S*)-1-Phenylhept-3-yne-2,6-diol **43**, which was synthesized from enantiomerically-pure (*S*)-propylene oxide, was then reacted with *p*tolualdehyde to furnish *cis*- and *trans*-benzo[*f*]isochromenes (eq 14). This reaction proceeded in 80% combined yield and resulted in a 1.4:1.0 ratio (¹H NMR) of *cis*- and *trans*- fused diastereomers.

In order to investigate whether each product from eq. 14 is enantiomerically-pure, HPLC analyses were performed using a chiral AD-H column. As shown in **Table 9**, both entry 1 and entry 2 exhibited 1.0:1.0 ratio of each enantiomer, which indicates that when using racemic alkynediol **41** in the reaction cascade, enantiomers in each pair of diastereomers are in 1.0:1.0 ratio. Therefore, the yields of *cis*- products (*S*,*R*)**42a** and (*R*,*S*)**42a** are both 23%, and the yields of *trans*- products (*S*,*S*)**42b** and (*R*,*R*)**42b** are both 17.5%. Entry 3 and entry 4 were, however, synthesized from chiral alkynediol **43**, and both *cis*- and *trans*- fused diastereomers were isolated as single enantiomer according to **Table 9**. This means the reaction sequence (eq 14) can completely retain the defined stereocenter from alkynediol **43**.

Table 9. HPLC analysis of benzo[f]isochromenes with two chiral centers

HPLC image

a. Samples from entry 1 are the *cis* products collected in reaction 41 to 42 (eq 13).

b. Samples from entry 2 are the trans products collected in reaction 41 to 42 (eq 13).

c. Samples from entry 3 are the cis product collected in reaction 43 to 42 (eq 14).

d. Samples from entry 4 are the trans product collected in reaction 43 to 42 (eq 14).

Both reactions involving racemic and chiral versions of 1-phenylhept-3yne-2,6-diol and *p*-tolualdehyde (eq 13 and 14) afforded benzo[*f*]isochromenes in high yields. There are two reasons that explain the high yields. Firstly, the aromatic moiety from *p*-tolualdehyde can form a conjugation system with O=C bond in oxocarbenium ion intermediate **VII** (eq 15), which can better stabilize **VII**. Secondly, the methyl substituent in *p*-tolualdehyde can *further* help stabilize oxocarbenium ion intermediate **VII** by donating electrons into the carbon of the O=C bond; the oxonia-Cope rearrangement would therefore be less favored.

2.6 CONCLUSIONS

In summary, research has been conducted on a two-component, fourreaction cascade to rapidly form novel tricyclic molecules (reaction f, **Scheme 2.1**). The reaction cascade proceeds with various alkynediol substrates and aldehydes, and provides an efficient synthetic strategy to assemble tricyclic isochromenes in a single reaction vessel. Optimization studies revealed that 1.0 equiv. of alkynediol, 1.4 equiv. of aldehyde and 3.0 equiv. of BF₃·Et₂O in CH₂Cl₂ gave less complex reaction mixtures and afforded benzo[*f*]isochromene products in highest yields.

In order to investigate factors affecting alkynyl-Prins cyclization and a possible 2-oxonia-[3,3]-rearrangement, both aliphatic and aromatic aldehydes were reacted with each of four alkynediols (reaction f, **Scheme 2.1, 37a-d**). As the substituent groups (R_1 , R_2 and R_3) in the alkynediol become more electron rich, the Friedel-Crafts arylation became more efficient and the cascade afforded more desired benzo[*f*]isochromene products. Stabilizing the oxocarbenium ion intermediates can help disfavor the oxonia-Cope

rearrangement. As the electron density of R₄ increases, the reaction cascade favors the Prins cyclization products instead of isomers resulting from sigmatropic rearrangement. Some side products from the reaction cascade were isolated which include dehydration products of alkynediol and aldol products from phenylpropionaldehyde.

Finally, the stereoselectivity of this reaction cascade was examined using racemic and chiral versions of 1-phenylhept-3-yne-2,6-diol and *p*-tolualdehyde to generate isochromenes with two chiral centers. Although both *cis*- and *trans*-fused tricyclic products were obtained, there was a slight preference for the *cis*- diastereomer (*cis:trans* = 1.3:1.0 to 1.4:1.0). When using alkynediol with a defined chiral center, both *cis*- and *trans*- fused diastereomers were isolated as single enantiomer. Investigations on the variations of the reaction cascade and more synthetic applications will be further studied.

CHAPTER 3. EXPERIMENTAL

3.1 GENERAL INFORMATION

All reactions were carried out under argon gas unless otherwise noted. Dichloromethane was distilled from CaH₂; THF was purified by a Solv-Tek® alumina drying column. Flash column chromatography was performed using Sorbent Technologies 40-75µm silica gel (200x400 mesh). Thin laver chromatography was conducted using Sorbent Technologies general-purpose silica gel HL TLC plates on glass. Visualization was accomplished with UV light or by heating plates dipped in Cerium Ammonium Molybdate or potassium permanganate solutions. Fourier transform infrared (FT-IR) spectroscopy was recorded using a DIGILAB FTS 7000 series FTIR spectrophotometer. Single crystal determinations were carried out with a Bruker SMART Apex II diffractometer using graphite-monochromated Cu K_a radiation. ¹H NMR spectra were recorded on Varian Mercury FTNMR (400) MHz) or Agilent Vnmr J4.1 (400 MHz) spectrometers and are reported in ppm using solvent as an internal standard (tetramethylsilane at 0.00 ppm). Protondecoupled ¹³C-NMR spectra were recorded on Varian Mercury FTNMR (400) MHz) or Agilent Vnmr J4.1 (400 MHz) spectrometers and are reported in ppm using solvent as an internal standard (CDCl₃ at 77.23 ppm). Quaternary carbons (C) are listed as (g), methine carbons (CH) are listed as (t), methylene carbons (CH₂) are listed as (s), and methyl carbons (CH₃) are listed as (p). Nuclear Overhauser Effects (NOEs) and two-dimensional NMR

42

spectra, including gCOSY and HSQCAD, were recorded on an Agilent Vnmr J4.1 spectrometer. Gas chromatographic (GC) analyses were conducted using a Varian 3900 spectrometer equipped with an FID. Gas chromatography-mass spectrometry (GC-MS) analyses were performed using an Agilent Technologies 5973 network mass selective detector and 6890N network GC system. High-performance liquid chromatography (HPLC) was performed using SHIMADZU UFLC with the following components: DGU-20A 5R degassing unit, LC-20AT liquid chromatograph, SIL-20AC HT auto sampler, CBM-20A communications bus module, SPD-M20A diode array detector and CTO-20A column oven. The type of chiral column used in HPLC analysis was an AD-H (4.6mm ϕ x250mml, particle size 5µm) from CHIRALPAK. High Resolution Mass Spectrometry (HRMS) analyses were completed by the Cosmic Service Center at Old Dominion University through positive electrospray ionization on a Bruker 12 Tesla APEX –Qe FTICR-MS with and Apollo II ion source.

3.2 SYNTHESIS OF ALKYNEDIOL

General Procedure A for Alkynediol Synthesis. Synthesis of 1-(2,5dimethylphenyl)-6-methylhept-3-yne-2,6-diol (37d): To a three-neck round bottom flask was added alkyne mono-alcohol **36d** (3.0483g, 17.49mmol, 1.0 equiv) in dry THF under argon gas, followed by *n*-BuLi (2.2 M, 17.49ml, 38.49mmol, 2.2 equiv) dropwise at -78°C. After 1hour, BF₃•Et₂O (3.7296g,

43

26.24mmol, 1.5 equiv) was added at -78°C and stirred for 15 min. Then isobutylene oxide (1.5594g, 20.99mmol, 1.2 equiv) was added dropwise, and the solution stirred for additional 1 h under argon at -78°C. The mixture was then warmed to rt, quenched with saturated NH₄Cl and extracted with Et₂O or EtOAc. The organic layers were combined, washed with Brine, dried over MgSO₄, and concentrated in vacuo. The crude product was then purified by flush column chromatography using 40-60% hexanes in ethyl acetate, and obtained 1.6308g product in 38% yield.

1-(4-methoxyphenyl)-6-methylhept-3-yne-2,6-diol (37a):

The compound was prepared using General Procedure A and purified by flash column chromatography using 40-60% hexanes in ethyl acetate to afford 40% average

yields as a viscous yellow oil. $R_f = 0.26$ (60% hexanes in ethyl acetate). IR (neat): 3414 (broad), 3038, 2981, 2941, 2886, 2843, 2213, 1671, 1615, 1516, 1302, 1249, 1180, 1035, 906, 821 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.17 (d, *J* = 8.6Hz, 2H), 6.83 (d, *J* = 8.2Hz, 2H), 4.49 (s, 1H), 3.75 (s, 4H), 2.95-2.86 (m, 3H), 2.32 (d, *J* = 1.6Hz, 2H), 1.23 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 158.38 (q), 130.74 (t), 129.24 (q), 113.76 (t), 83.62 (q), 82.72 (q), 70.13 (q), 63.42 (t), 55.26 (p), 43.46 (s), 34.20 (s), 28.65 (p), 28.58 (p). HRMS (CI): *m/z* [M+Na]⁺ calcd for C₁₅H₂₀O₃Na: 271.1305; found: 271.1307.

1-(4-chlorophenyl)-6-methylhept-3-yne-2,6-diol (37b):

The title compound was prepared according to General Procedure A and purified by flash column chromatography using 40-60% hexanes in ethyl acetate

to afford 35% average yields as a viscous yellow oil. $R_f = 0.16$ (60% hexanes in ethyl acetate). IR (neat): 3357 (broad), 3056, 2974, 2933, 2879, 2281, 2230, 1896, 1653, 1599, 1493, 1410, 1381, 1265, 1152, 1090, 1037, 905, 808, 739 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.26-7.17$ (m, 4H), 4.51 (s, 1H), 3.72 (broad s, 1H), 2.93-2.90 (m, 2H), 2.78 (broad s, 1H), 2.31 (d, J = 2.0Hz, 2H), 1.22 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 135.69$ (q), 132.66 (q), 131.30 (t), 131.23 (t), 128.49 (t), 128.38 (t), 83.36 (q), 83.17 (q), 70.30 (t), 63.08 (t), 43.61 (s), 34.21 (s), 28.77 (p), 28.68 (p). HRMS (CI): m/z [M+Na]⁺ calcd for C₁₄H₁₇ClO₂Na: 275.0809; found: 275.0813.

6-methyl-1-(o-tolyl)hept-3-yne-2,6-diol (37c):

This diol was prepared according to General Procedure A and was purified by flash column chromatography using 40-60%

hexanes in ethyl acetate to afford 30% yield as a viscous yellow oil. $R_f = 0.24$ (60% hexanes in ethyl acetate), or $R_f = 0.38$ (40% hexanes in ethyl acetate). IR (neat): 3357 (broad), 3065, 3026, 2980, 2931, 2288, 2230, 1495, 1463, 1383, 1156, 1032, 906, 745 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.23$ -7.20 (m, 1H), 7.16-7.12 (m, 3H), 4.60 (t, J = 6.8Hz, 1H), 3.34 (broad s, 1H), 3.07 (dd, J = 13.7, 7.0Hz, 1H), 3.00 (dd, J = 13.7, 7.0Hz, 1H), 2.58 (broad s, 1H), 2.37 (s, 3H), 2.35 (d, J = 1.9Hz, 2H), 1.25 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 136.97$ (q), 135.51 (q), 130.61 (t), 130.54 (t), 127.08 (t), 126.03 (t), 83.80 (q), 82.69 (q), 70.13 (q), 62.76 (t), 41.57 (s), 34.42 (s), 28.78 (p), 28.75 (p), 19.88 (p). HRMS (CI): m/z [M+Ma]⁺ calcd for C₁₅H₂₀O₂Na: 255.1356; found: 255.1358.

1-(2,5-dimethylphenyl)-6-methylhept-3-yne-2,6-diol (37d):

This compound was synthesized according to General Procedure A and purified by flash column chromatography using 40-60% hexanes in ethyl acetate to afford

average yields of 36% as a viscous yellow oil. $R_f = 0.26$ (60% hexanes in ethyl acetate), or $R_f = 0.45$ (40% hexanes in ethyl acetate). IR (neat): 3391, 2979, 2933, 2872, 2733, 2233, 1618, 1505, 1460, 1381, 1158, 1036, 906, 809 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.02$ -6.91 (m, 3H), 4.54 (t, J = 6.4Hz, 1H), 3.15 (s, 1H), 2.98 (dd, J = 13.7, 7.0Hz, 1H), 2.92 (dd, J = 13.7, 7.0Hz, 1H), 2.51 (s, 1H), 2.31 (s, 2H), 2.28 (s, 3H), 2.26 (s, 3H), 1.21 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 135.35$ (q), 135.29 (q), 133.74 (q), 131.36 (t), 130.40 (t), 127.71 (t), 83.82 (q), 82.56 (q), 70.12 (q), 62.73 (t), 41.59 (s), 34.38 (s), 28.74 (p), 28.70 (p), 21.07 (p), 19.37 (p). HRMS (CI): *m/z* [M+Na]⁺ calcd for C₁₆H₂₂O₂Na: 269.1512; found: 269.1514.

1-phenylhept-3-yne-2,6-diol (41):

The compound was prepared by General Procedure A from propargylic alcohol and racemic propylene oxide. The crude diol was purified by flash column chromatography using 40-60% hexanes in ethyl acetate to afford 67% yield³⁴ as a viscous yellow oil. $R_f = 0.28$ (50% hexanes in ethyl acetate). IR (neat): 3379 (broad), 3091, 3068, 3031, 2973, 2930, 2874, 2234, 1455, 1341, 1094, 1040, 940, 741, 700 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.14$ -7.03 (m, 5H), 4.39-4.34 (m, 1H), 3.72-3.64 (m, 1H), 2.78 (overlapping d, J = 6.4Hz, 2H), 2.80 (broad s, 2H), 2.18 (unresolved dd of m, J = 16.7, 4.7Hz, 1H), 2.08 (APP ddq, J = 16.6, 6.7, 0.9Hz, 1H), 1.02 (d, J = 6.2Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 137.12$ (q), 129.89 (t), 128.50 (t), 126.96 (t), 83.20 (q), 83.18 (q), 82.91 (q), 82.88 (q), 66.44 (t), 66.39 (t), 63.43 (t), 63.40 (t), 44.45 (s), 44.43 (s), 29.30 (s), 29.28 (s), 22.39 (p), 22.37 (p). HRMS (CI): m/z [M+Na]⁺ calcd for C₁₃H₁₆ O₂Na: 227.1043; found: 227.1045.

(6S)-1-phenylhept-3-yne-2,6-diol (43):

The compound was prepared in the same manner as **41** but with S-propylene oxide. The crude diol was purified by flash column chromatography using

40-60% hexanes in ethyl acetate to afford 44% yield as a viscous yellow oil. $R_{\rm f}$ = 0.27 (50% hexanes in ethyl acetate). IR (neat): 3379 (broad), 3091, 3068, 3031, 2973, 2930, 2874, 2234, 1455, 1341, 1094, 1040, 940, 741, 700 cm⁻¹. ¹H NMR (400 MHz, CDCI₃): δ = 7.32-7.21 (m, 5H), 4.57-4.52 (m, 1H), 3.913.82 (m, 1H), 3.26 (broad s, 1H), 2.96 (overlapping d, J = 6.6Hz, 2H), 2.81 (broad s, 1H), 2.37 (dddd, J = 16.6, 4.7, 1.9, 0.8Hz, 1H), 2.26 (dddd, J = 16.6, 7.2, 1.9, 0.8Hz, 1H), 1.18 (d, J = 6.3Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 137.14$ (q), 129.86 (t), 128.47 (t), 126.92 (t), 83.18 (q), 83.16 (q), 82.89 (q), 82.87 (q), 66.43 (t), 66.37 (t), 63.40 (t), 63.37 (t), 44.42 (s), 29.26 (s), 29.24 (s), 22.37 (p), 22.35 (p). HRMS (CI): m/z [M+Na]⁺ calcd for C₁₃H₁₆O₂Na: 227.1043; found: 227.1045.

3.3 SYNTHESIS OF ISOCHROMENES

General Procedure B for Synthesis of Benzo[f]isochromenes. Synthesis of 2,2,7,10-tetramethyl-4-(p-tolyl)-1,4-dihydro-2H-benzo[f]isochromene (38d-4): To a round bottom flask was added *p*-tolualdehyde (0.0477g, 0.40mmol, 1.4 equiv) in dry CH_2Cl_2 under argon gas at -78°C, followed by BF₃•Et₂O (0.1210g, 0.85mmol, 3.0 equiv) dropwise. Then alkynediol **37d** (0.0700g, 0.28mmol, 1.0 equiv, 0.10 M) in CH_2Cl_2 was added dropwise at -78°C. The mixture was then warmed to room temperature and stirred under argon gas. After 6-12 hours the reaction was quenched with saturated NaHCO₃ and extracted with Et₂O or EtOAc. The combined organic layers were washed with brine and NaHSO₃, dried over MgSO₄ and then concentrated in vacuo. The crude product was purified by flash column chromatography using 0-80% hexanes in dichloromethane, and obtained product in 89% yield.

9-methoxy-2,2-dimethyl-4-phenethyl-1,4-dihydro-2H-benzo[f]iso-

chromene (38a-1):

The compound was purified by flash column chromatography using 0-40% hexanes in dichloromethane to afford 15% yield as a viscous yellow oil. $R_{\rm f}$ = 0.69 (10% hexanes in dichloromethane). IR (neat): 3083,

3060, 3025, 2970, 2927, 2859, 2833, 1738, 1625, 1516, 1458, 1228, 1180, 838, 744 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.57 (d, *J* = 8.6Hz, 1H), 7.46 (d, *J* = 8.2Hz, 1H), 7.11-6.94 (m, 8H), 4.81-4.76 (m, 1H), 3.79 (s, 3H), 2.80 (unresolved overlapping d, 2H), 2.66-2.58 (m, 1H), 2.38 (ddd, *J* = 14.3, 10.2, 4.5Hz, 1H), 2.22-2.13 (m, 1H), 2.00-1.91 (m, 1H), 1.38 (s, 3H), 1.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 158.26 (q), 142.96 (q), 134.87 (q), 133.43 (q), 130.19 (t), 128.81 (t), 128.43 (t), 127.80 (q), 127.63 (q), 126.05 (t), 125.77 (t), 120.57 (t), 117.62 (t), 101.94 (t), 70.92 (t), 70.66 (q), 55.55 (p), 38.22 (s), 36.93 (s), 31.11 (p), 30.86 (s), 23.57 (p). HRMS (Cl): *m/z* [M+Na]⁺ calcd for C₂₄H₂₆O₂Na: 369.1825; found: 369.1829.

50

9-methoxy-2,2-dimethyl-4-(4-nitrophenyl)-1,4-dihydro-2H-benzo-

[f]isochromene (38a-2):

The compound was purified by flash column chromatography using 0-40% hexanes in dichloromethane to afford 22% yield as a viscous yellow oil. $R_f =$ 0.61 (pure dichloromethane). IR (neat): 3107, 3078, 3057, 2977, , 1351, 1229, 1065, 837 cm⁻¹. ¹H

2933, 2836, 1735, 1626, 1608, 1521, 1459, 1351, 1229, 1065, 837 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.19 (d, *J* = 8.6Hz, 2H), 7.70 (d, *J* = 9.0Hz, 1H), 7.52 (d, *J* = 8.7Hz, 2H), 7.49 (d, *J* = 8.7Hz, 1H), 7.24 (d, *J* = 2.4Hz, 1H), 7.18 (dd, *J* = 8.8, 2.5Hz, 1H), 6.65 (d, *J* = 8.6Hz, 1H), 5.95 (s, 1H), 3.98 (s, 3H), 3.18 (d, *J* = 16.1Hz, 1H), 3.09 (d, *J* = 16.4Hz, 1H), 1.57 (s, 3H), 1.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 158.59 (q), 150.26 (q), 147.86 (q), 133.34 (q), 132.94 (q), 130.35 (t), 130.01 (t), 127.86 (q), 127.28 (q), 126.26 (t), 123.99 (t), 121.71 (t), 118.24 (t), 102.01 (t), 75.42 (t), 72.37 (q), 55.61 (p), 36.69 (s), 31.07 (p), 23.63 (p). HRMS (Cl): *m/z* [M+Na]⁺ calcd for $C_{22}H_{21}NO_4Na$: 386.1363; found: 386.1366. 9-methoxy-2,2-dimethyl-4-(4-(trifluoromethyl)phenyl)-1,4-dihydro-2H-

benzo[f]isochromene (38a-3):

The compound was purified by flash column chromatography using 20-80% hexanes in dichloromethane to afford 25% yield as a yellow crystal. $R_f =$ 0.33 (40% hexanes in dichloromethane). IR (neat): 3058,

2999, 2980, 2932, 2906, 2836, 1925, 1627, 1516, 1332, 1230, 1168, 1068, 839 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.70 (d, *J* = 8.9Hz, 1H), 7.58 (d, *J* = 8.2Hz, 2H), 7.49 (s, 1H), 7.46 (d, *J* = 8.6Hz, 2H), 7.24 (d, *J* = 2.3Hz, 1H), 7.17 (dd, *J* = 9.0, 2.4Hz, 1H), 6.68 (d, *J* = 8.6Hz, 1H), 5.90(s, 1H), 3.98 (s, 3H), 3.18 (d, *J* = 16.4Hz, 1H), 3.07 (d, *J* = 15.2Hz, 1H), 1.56 (s, 3H), 1.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 158.49 (q), 156.28 (CF₃, *J* = 210.6Hz), 146.98 (q), 133.63 (q), 133.30 (q), 130.54 (q), 130.33 (t), 129.54 (t), 127.82 (q), 127.26 (q), 126.08 (t), 125.72 (t), 122.06 (t), 118.06 (t), 102.01 (t), 75.76 (t), 72.18 (q), 55.59 (p), 36.75 (s), 31.14 (p), 23.63 (p).

4-(4-bromophenyl)-9-methoxy-2,2-dimethyl-1,4-dihydro-2H-benzo-

[f]isochromene (38a-4):

The compound was purified by flash column chromatography using 20-80% hexanes in dichloromethane to afford 29% yield as a viscous yellow oil. $R_{\rm f}$ = 0.58 (40% hexanes in dichloromethane). IR (neat):

3054, 2974, 2931, 2836, 1905, 1700, 1626, 1515, 1228, 1071, 1011, 835, 738 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.69 (d, *J* = 8.7Hz, 1H), 7.48 (s, 1H), 7.44 (dd, *J* = 10.7, 2.5Hz, 2H), 7.24-7.19 (m, 3H), 7.16 (dd, *J* = 8.8, 2.5Hz, 1H), 6.68 (d, *J* = 8.2Hz, 1H), 5.81 (s, 1H), 3.97 (s, 3H), 3.15 (d, *J* = 16.1Hz, 1H), 3.05 (d, *J* = 15.7Hz, 1H), 1.55 (s, 3H), 1.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 158.42 (q), 142.13 (q), 133.98 (q), 133.25 (q), 131.84 (t), 130.91 (t), 130.29 (t), 127.76 (q), 127.18 (q), 125.94 (t), 122.21 (t), 122.18 (q), 117.94 (t), 101.98 (t), 75.64 (t), 72.02 (q), 55.57 (p), 36.73 (s), 31.16 (p), 23.60 (p). HRMS (Cl): *m/z* [M+Na]⁺ calcd for C₂₂H₂₁BrO₂Na: 419.0617; found: 419.0618.

9-chloro-4-ethyl-2,2-dimethyl-1,4-dihydro-2H-benzo[f]isochromene (38b-

1):

The compound was purified by flash column chromatography using 20-80% hexanes in dichloromethane to afford 39% yield as a viscous yellow oil. $R_{\rm f} =$ 0.48 (40% hexanes in

dichloromethane). IR (neat): 3052, 2972, 2932, 2874, 2831, 1903, 1724, 1623, 1597, 1505, 1367, 1202, 1096, 843 cm⁻¹. ¹H NMR (400 MHz, CDCI₃): δ = 7.88 (d, *J* = 2.0Hz, 1H), 7.72 (d, *J* = 8.6Hz, 1H), 7.63 (d, *J* = 8.6Hz, 1H), 7.38 (d, *J* = 8.6Hz, 1H), 7.21 (d, *J* = 8.6Hz, 1H), 4.91-4.88 (m, 1H), 2.92 (unresolved overlapping d, 2H), 2.09-1.99 (m, 1H), 1.90-1.80 (m, 1H), 1.47 (s, 3H), 1.15 (s, 3H), 0.80 (t, *J* = 7.5Hz, 3H). ¹³C NMR (100 MHz, CDCI₃): δ = 135.55 (q), 133.11 (q), 132.31 (q), 130.53 (q), 130.17 (t), 128.60 (q), 126.21 (t), 126.03 (t), 123.32 (t), 122.27 (t), 72.32 (t), 70.51 (q), 36.63 (s), 30.97 (p), 29.08 (s), 23.46 (p), 8.74 (p).

9-chloro-4-isopropyl-2,2-dimethyl-1,4-dihydro-2H-benzo[f]isochromene

(38b-2):

The compound was purified by flash column chromatography using 20-80% hexanes in dichloromethane to afford 27% yield as a viscous yellow oil. $R_{\rm f}$ = 0.34 (80% hexanes in

dichloromethane). IR (neat): 3053, 2973, 2930, 2871, 2827, 1623, 1595, 1504, 1366, 1197, 1048, 841, 630 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.88 (d, *J* = 2.0Hz, 1H), 7.72 (d, *J* = 8.7Hz, 1H), 7.62 (d, *J* = 8.6Hz, 1H), 7.38 (dd, *J* = 8.8, 2.1Hz, 1H), 7.22 (d, *J* = 8.2Hz, 1H), 4.74 (d, *J* = 1.6Hz, 1H), 2.93 (dd, *J* = 16.0, 0.8Hz, 1H), 2.83 (d, *J* = 16.1Hz, 1H), 2.27 (sept. of d, *J* = 6.8, 2.4Hz, 1H), 1.44 (s, 3H), 1.13 (d, *J* = 7.0Hz, 3H), 1.09 (s, 3H), 0.57 (d, *J* = 6.7Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 135.88 (q), 133.06 (q), 132.22 (q), 130.48 (q), 130.14 (t), 128.90 (q), 126.11 (t), 125.92 (t), 123.34 (t), 122.29 (t), 75.86 (t), 70.13 (q), 36.59 (s), 33.97 (t), 30.92 (p), 23.37 (p), 20.13 (p), 15.00 (p).

4-(sec-butyl)-9-chloro-2,2-dimethyl-1,4-dihydro-2H-benzo[f]isochromene

(38b-3):

The compound was purified by flash column chromatography using 20-80% *n*-hexane in dichloromethane. A pair of diastereomers was obtained in 2:1 ratio with 36% total yield as

viscous yellow oil. *R*_f = 0.51 and 0.59 (70% *n*-hexane in dichloromethane). IR (neat): 3051, 2971, 2934, 2896, 2873, 2833, 2345, 1622, 1596, 1504, 1459, 1369, 1196, 840, 662 cm⁻¹.

Diastereomer A. ($R_f = 0.51$). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.90$ (s, 1H), 7.75 (d, J = 8.6Hz, 1H), 7.65 (d, J = 8.6Hz, 1H), 7.40 (dd, J = 8.6, 2.0Hz, 1H), 7.24 (d, J = 8.6Hz, 1H), 4.88 (s, 1H), 2.95 (d, J = 16.0Hz, 1H), 2.86 (d, J = 16.0Hz, 1H), 2.02-1.95 (m, 1H), 1.72-1.60 (m, 1H), 1.51-1.47 (m, 1H), 1.45 (s, 3H), 1.12 (s, 3H), 1.02 (t, J = 7.4Hz, 3H), 0.56 (d, J = 7.0Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 136.02$ (q), 133.07 (q), 132.20 (q), 130.41 (q), 130.14 (t), 128.96 (q), 126.06 (t), 125.92 (t), 123.34 (t), 122.25 (t), 73.73 (t), 70.02 (q), 40.76 (t), 36.52 (s), 30.93 (p), 27.00 (s), 23.31 (p), 12.86 (p), 12.62 (p).

Diastereomer B. ($R_f = 0.59$). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.90$ (s, 1H), 7.75 (d, J = 8.6Hz, 1H), 7.65 (d, J = 8.2Hz, 1H), 7.40 (dd, J = 8.8, 1.7Hz, 1H), 7.24 (dd, J = 8.6, 3.1Hz, 1H), 4.81 (s, 1H), 2.95 (d, J = 15.6Hz, 1H), 2.86

(d, J = 16.0Hz, 1H), 2.04-1.95 (m, 1H), 1.45 (broad s, 5H), 1.13 (s, 3H), 1.11 (s, 3H), 0.72 (t, J = 7.4Hz, 3H). ¹³C NMR (100 MHz, CDCI₃): $\delta = 136.02$ (q), 133.07 (q), 132.20 (q), 130.41 (q), 130.14 (t), 128.96 (q), 126.11 (t), 125.89 (t), 123.25 (t), 122.27 (t), 76.47 (t), 70.17 (q), 40.94 (t), 36.63 (s), 23.31 (p), 22.51 (s), 16.71 (p), 12.86 (p), 12.62 (p).

9-chloro-2,2-dimethyl-4-phenethyl-1,4-dihydro-2H-benzo[f]isochromene (38b-4):

The compound was purified by flash column chromatography using 20-80% hexanes in dichloromethane to afford 38% yield as a viscous yellow oil. $R_{\rm f} =$ 0.54 (40% hexanes in

dichloromethane). IR (neat): 3426, 3063, 3030, 2977, 2930, 2865, 2837, 1944, 1735, 1622, 1595, 1497, 1455, 1094, 838, 741 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.75$ (d, J = 1.5Hz, 1H), 7.59 (d, J = 8.7Hz, 1H), 7.49 (d, J = 8.7Hz, 1H), 7.25 (dd, J = 9.0, 2.0Hz, 1H), 7.13-6.98 (m, 6H), 4.79-4.74 (m, 1H), 2.81 (s, 2H), 2.66-2.58 (m, 1H), 2.39 (ddd, J = 14.2, 10.0, 4.2Hz, 1H), 2.22-2.13 (m, 1H), 1.99-1.90 (m, 1H), 1.36 (s, 3H), 1.02 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 142.75$ (q), 135.56 (q), 133.15 (q), 132.39 (q), 130.58 (q), 130.19 (t), 128.79 (t), 128.47 (q), 128.45 (t), 126.29 (t), 126.12 (t), 125.83

(t), 123.14 (t), 122.29 (t), 70.75 (t), 70.66 (q), 38.10 (s), 36.65 (s), 31.00 (p), 30.88 (s), 23.47 (p).

9-chloro-2,2-dimethyl-4-(4-nitrophenyl)-1,4-dihydro-2H-

benzo[f]isochromene (38b-5):

The compound was purified by flash column chromatography using 20-80% hexanes in dichloromethane to afford 45% yield as a viscous yellow oil. $R_{\rm f} = 0.55$ (40% hexanes in dichloromethane). IR (neat): 3110, 3079, 3056, 2975, 2931, 2870, 2455, 1927,

1798, 1725, 1609, 1526, 1352, 1270, 1187, 1075, 857, 742 cm⁻¹. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: $\delta = 8.20 (dt, J = 8.6, 2.1 \text{Hz}, 2 \text{H}), 7.98 (d, J = 2.0 \text{Hz}, 1 \text{H}),$ 7.73 (d, J = 8.6Hz, 1H), 7.54-7.50 (m, 3H), 7.45 (dd, J = 8.8, 2.2Hz, 1H), 6.79 (d, J = 8.6Hz, 1H), 5.94 (s, 1H), 3.20 (d, J = 16.8Hz, 1H), 3.12 (dd, J = 16.4)1.2Hz, 1H), 1.57 (s, 3H), 1.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 149.80 (q), 147.94 (q), 133.58 (q), 133.00 (q), 132.89 (q), 130.83 (q), 130.33 (t), 129.99 (t), 128.00 (g), 126.96 (t), 126.35 (t), 124.23 (t), 124.04 (t), 122.36 (t), 75.25 (t), 72.37 (q), 36.41 (s), 30.95 (p), 23.53 (p).

9-chloro-2,2-dimethyl-4-(4-(trifluoromethyl)phenyl)-1,4-dihydro-2H-

benzo[f]isochromene (38b-6):

The compound was purified by flash column chromatography using 20-80% hexanes in dichloromethane to afford 48% yield as a viscous yellow oil. $R_{\rm f} = 0.70$

(40% hexanes in dichloromethane). IR (neat): 3054, 2976, 2930, 2871, 2853, 1922, 1737, 1619, 1594, 1502, 1416, 1323, 1164, 1128, 1068, 1019, 989, 838 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.94 (d, *J* = 2.0Hz, 1H), 7.68 (d, *J* = 9.0Hz, 1H), 7.56 (d, *J* = 7.8Hz, 2H), 7.49 (d, *J* = 8.6Hz, 1H), 7.42 (d, *J* = 7.0Hz, 2H), 7.40 (dd, *J* = 8.6, 2.0Hz, 1H), 6.79 (d, *J* = 8.6Hz, 1H), 5.87 (s, 1H), 3.16 (d, *J* = 16.4Hz, 1H), 3.07 (dd, *J* = 16.5, 1.2Hz, 1H), 1.55 (s, 3H), 1.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 146.59 (q), 134.26 (q), 133.00 (q), 132.72 (q), 130.79 (q), 130.35 (q), 130.30 (t), 129.52 (t), 127.95 (q), 126.77 (t), 126.16 (t), 125.78 (t), 124.30 (CF₃, *J* = 272.1Hz), 124.59 (t), 122.35 (t), 75.59 (t), 72.15 (q), 36.44 (s), 31.00 (p), 23.50 (p).

4-(4-bromophenyl)-9-chloro-2,2-dimethyl-1,4-dihydro-2H-

benzo[f]isochromene (38b-7):

2,2,7-trimethyl-4-phenethyl-1,4-dihydro-2H-benzo[f]isochromene (38c-1):

The compound was purified by flash column chromatography using 20-80% hexanes in dichloromethane to afford 57% yield as a viscous yellow oil. $R_{\rm f}$ = 0.61 (40% hexanes in dichloromethane), $R_{\rm f}$ = 0.45 (50%

hexanes in dichloromethane). IR (neat): 3082, 3065, 3025, 296f8, 2922, 2861, 1960, 1740, 1694, 1602, 1454, 1379, 1097, 749, 701 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.86 (d, *J* = 8.8Hz, 1H), 7.83 (d, *J* = 8.5Hz, 1H), 7.42 (dd, *J* = 8.4, 6.9Hz, 1H), 7.33-7.13 (m, 7H), 4.99-4.95 (m, 1H), 3.07 (d, *J* = 16.0Hz, 1H), 3.02 (d, *J* = 16.0Hz, 1H), 2.82-2.75 (m, 1H), 2.70 (s, 3H), 2.54 (ddd, *J* = 14.0, 10.1, 4.4Hz, 1H), 2.39-2.31 (m, 1H), 2.18-2.09 (m, 1H), 1.52 (s, 3H), 1.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ =142.95 (q), 135.05 (q), 133.95 (q), 132.37 (q), 131.43 (q), 129.57 (q), 128.81 (t), 128.43 (t), 126.39 (t), 126.02 (t), 125.77 (t), 122.62 (t), 122.43 (t), 121.24 (t), 70.84 (t), 70.75 (q), 38.22 (s), 37.00 (s), 31.09 (p), 30.84 (s), 23.51 (p), 19.86 (p). HRMS (CI): *m/z* [M+Na]⁺ calcd for C₂₄H₂₆ONa: 353.1876; found: 353.1878.

2,2,7-trimethyI-4-(4-nitrophenyI)-1,4-dihydro-2H-benzo[f]isochromene

(38c-2):

The compound was purified by flash column chromatography using 20-80% hexanes in dichloromethane and then 70% hexanes in ethyl acetate to afford 46% yield as a viscous yellow oil.

*R*_f = 0.34 (40% hexanes in dichloromethane), *R*_f = 0.69 (70% hexanes in ethyl acetate). IR (neat): 3071, 2973, 2931, 2893, 2860, 1601, 1520, 1346, 1182, 1072, 846, 798 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.18 (d, *J* = 9.0Hz, 2H), 7.87 (d, *J* = 8.2Hz, 1H), 7.73 (d, *J* = 8.6Hz, 1H), 7.52 (d, *J* = 9.0Hz, 2H), 7.47 (t, *J* = 7.8Hz, 1H), 7.34 (d, *J* = 7.0Hz, 1H), 6.82 (d, *J* = 9.0Hz, 1H), 5.96(s, 1H), 3.22 (overlapping d, *J* = 17.6Hz, 2H), 2.64 (s, 3H), 1.56 (s, 3H), 1.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 150.25 (q), 147.86 (q), 135.27 (q), 132.22 (q), 132.06 (q), 131.68 (q), 130.00 (t), 129.04 (q), 127.02 (t), 126.49 (t), 124.00 (t), 123.72 (t), 122.67 (t), 121.25 (t), 75.32 (t), 72.44 (q), 36.76 (s), 31.04 (p), 23.56 (p), 19.80 (p).

4-(4-bromophenyl)-2,2,7-trimethyl-1,4-dihydro-2H-benzo[f]isochromene

(38c-3):

The compound was purified by flash column chromatography using 20-80% hexanes in dichloromethane to afford 62% yield as a viscous yellow oil. $R_{\rm f}$ = 0.60 (40% hexanes in dichloromethane). IR (neat):

3073, 3046, 2991, 2937, 2899, 2871, 2843, 2340, 1906, 1737, 1602, 1488, 1382, 1272, 1187, 1080, 817, 774 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.87 (d, *J* = 8.6Hz, 1H), 7.72 (d, *J* = 9.0Hz, 1H), 7.47-7.43 (m, 3H), 7.33 (d, *J* = 6.6Hz, 1H), 7.20 (d, *J* = 8.2Hz, 2H), 6.86 (d, *J* = 8.6Hz, 1H), 5.82 (s, 1H), 3.18 (unresolved overlapping d, 2H), 2.64 (s, 3H), 1.54 (s, 3H), 1.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 142.11 (q), 135.17 (q), 133.10 (q), 132.16 (q), 131.86 (t), 131.56 (q), 130.90 (t), 128.90 (q), 126.76 (t), 126.27 (t), 124.22 (t), 122.34 (t), 122.20 (q), 121.24 (t), 75.54 (t), 72.09 (q), 36.79 (s), 31.14 (p), 23.53 (p), 19.83 (p).

The compound was purified by flash column chromatography using 20-80% hexanes in dichloromethane to afford 74% yield as a viscous yellow oil. $R_{\rm f}$ = 0.61 (40% hexanes in dichloromethane). IR (neat):

3068, 3024, 2987, 2937, 2893, 2864, 2833, 1601, 1509, 1439, 1379, 1301, 1265, 1177, 1068, 1020 cm⁻¹. ¹H NMR (400 MHz, CDCI₃): δ = 7.87 (d, *J* = 8.6Hz, 1H), 7.70 (d, *J* = 9.0Hz, 1H), 7.43 (dd, *J* = 8.6, 7.1Hz, 1H), 7.31 (d, *J* = 7.1Hz, 1H), 7.21 (d, *J* = 7.9Hz, 2H), 7.12 (d, *J* = 7.9Hz, 2H), 6.91 (d, *J* = 9.0Hz, 1H), 5.83 (s, 1H), 3.20 (d, *J* = 16.5Hz, 1H), 3.15 (d, *J* = 16.1Hz, 1H), 2.63 (s, 3H), 2.31 (s, 3H), 1.53 (s, 3H), 1.34 (s, 3H); ¹³C NMR (100 MHz, CDCI₃): δ = 140.15 (q), 137.84 (q), 135.09 (q), 134.02 (q), 132.19 (q), 131.50 (q), 129.40 (t), 129.11 (t), 128.83 (q), 126.54 (t), 126.08 (t), 124.56 (t), 122.12 (t), 121.26 (t), 75.93 (t), 71.84 (q), 36.89 (s), 31.24 (p), 23.56 (p), 21.41 (p), 19.81 (p). HRMS (CI): *m/z* [M+Na]⁺ calcd for C₂₃H₂₄ONa: 339.1719; found: 339.1722.

2,2,7-trimethyl-4-(p-tolyl)-1,4-dihydro-2H-benzo[f]isochromene (38c-4):
2,2,7,10-tetramethyl-4-phenethyl-1,4-dihydro-2H-benzo[f]isochromene

(38d-1):

The compound was purified by flash column chromatography using 20-80% hexanes in dichloromethane to afford 78% yield as a viscous yellow oil. *R*_f = 0.58 (40% hexanes in

dichloromethane). IR (neat): 3086, 3061, 3029, 2978, 2929, 2861, 1736, 1602, 1497, 1454, 1366, 1097, 823, 741 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.83 (d, *J* = 9.0Hz, 1H), 7.26-7.12 (m, 8H), 4.98 (dd, *J* = 3.3, 1.8Hz, 1H), 3.40 (d, *J* = 16.0Hz, 1H), 3.19 (dd, *J* = 15.9Hz, 0.9Hz, 1H), 2.85 (s, 3H), 2.83-2.77 (m, 1H), 2.63 (s, 3H), 2.56 (ddd, *J* = 14.5, 10.6, 4.6Hz, 1H), 2.34-2.25 (m, 1H), 2.15-2.06 (m, 1H), 1.48 (s, 3H), 1.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 142.91 (q), 135.30 (q), 133.71 (q), 133.08 (q), 132.98 (q), 132.84 (q), 131.25 (q), 130.13 (t), 128.79 (t), 128.41 (t), 126.13 (t), 125.75 (t), 121.31 (t), 122.68 (t), 72.03 (t), 70.89 (q), 42.59 (s), 38.98(s), 31.23 (p), 30.80 (s), 26.45 (p), 22.83 (p), 20.28 (p). HRMS (CI): *m/z* [M+Na]⁺ calcd for C₂₅H₂₈ONa: 367.2032; found: 367.2036.

2,2,7,10-tetramethyl-4-(4-nitrophenyl)-1,4-dihydro-2H-benzo[f]iso-

chromene (38d-2):

The compound was prepared according to General Procedure B and purified by flash column chromatography using a mixture of 20-80% hexanes in dichloromethane and 80%

hexanes in ethyl acetate to afford 53% yield as a viscous yellow oil. $R_f = 0.48$ (a mixture of 80% hexanes in dichloromethane and 80% hexanes in ethyl acetate). IR (neat): 3107, 3078, 3036, 2978, 2935, 2860, 2367, 1738, 1607, 1559, 1526, 1457, 1340 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.16$ (d, J =9.0Hz, 2H), 7.73 (d, J = 9.0Hz, 1H), 7.54 (d, J = 9.0Hz, 2H), 7.22 (d, J =7.4Hz, 1H), 7.17 (d, J = 7.5Hz, 1H), 6.84 (d, J = 9.0Hz, 1H), 5.97 (s, 1H), 3.59 (d, J = 16.5Hz, 1H), 3.37 (d, J = 16.4Hz, 1H), 2.92 (s, 3H), 2.58 (s, 3H), 1.51 (s, 3H), 1.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 150.37$ (q), 147.79 (q), 133.63 (q), 133.30 (q), 133.19 (q), 133.12 (q), 132.09 (q), 130.74 (q), 130.65 (t), 129.87 (t), 126.76 (t), 124.00 (t), 123.67 (t), 123.53 (t), 76.24 (t), 72.45 (q), 42.19 (s), 31.17 (p), 26.58 (p), 22.96 (p), 20.22 (p). HRMS (Cl): *m/z* [M+Na]⁺ calcd for C₂₃H₂₃NO₃Na: 384.1570; found: 384.1574.

4-(4-bromophenyl)-2,2,7,10-tetramethyl-1,4-dihydro-2H-benzo[f]iso-

chromene (38d-3):

The compound was prepared according to General Procedure B and purified by flash column chromatography using 20-80% hexanes in dichloromethane to afford 77% yield as light yellow crystals. $R_{\rm f}$ = 0.60 (40% hexanes

in dichloromethane). IR (neat): 3043, 2973, 2928, 2859, 2839, 1906, 1860, 1591, 1579, 1486, 1366, 1184, 1071, 1011, 824 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.71 (d, *J* = 9.0Hz, 1H), 7.43 (d, *J* = 8.2Hz, 2H), 7.24-7.15 (m, 4H), 6.86 (d, *J* = 9.0Hz, 1H), 5.83 (s, 1H), 3.57 (d, *J* = 16.0Hz, 1H), 3.33 (d, *J* = 15.6Hz, 1H), 2.90 (s, 3H), 2.57 (s, 3H), 1.49 (s, 3H), 1.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 142.20 (q), 134.09 (q), 133.54 (q), 133.23 (q), 133.09 (q), 133.07 (q), 131.85 (t), 130.82 (t), 130.58 (q), 130.44 (t), 126.51 (t), 124.01 (t), 123.34 (t), 122.14 (q), 76.44 (t), 72.12 (q), 42.24 (s), 31.28 (p), 26.62 (p), 22.90 (p), 20.27 (p).

2,2,7,10-tetramethyl-4-(p-tolyl)-1,4-dihydro-2*H*-benzo[*f*]isochromene (38d-4):

Prepared according to General Procedure B, this compound was purified by flash column chromatography using 20-80% hexanes in dichloromethane to afford 89% yield as light yellow solid. $R_f = 0.58$ (40% hexanes in dichloromethane). IR (neat): 3024, 2968, 2924, 2860, 2833, 1514, 1452, 1379, 1366, 1300, 1179, 1082,

1058, 820 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.69 (d, *J* = 8.8Hz, 1H), 7.24-7.10 (m, 6H), 6.91 (d, *J* = 8.5Hz, 1H), 5.84 (s, 1H), 3.58 (d, *J* = 16.2Hz, 1H), 3.32 (d, *J* = 16.2Hz, 1H), 2.90 (s, 3H), 2.56 (s, 3H), 2.30 (s, 3H), 1.48 (s, 3H), 1.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 140.21 (q), 137.78 (q), 135.00 (q), 133.55 (q), 133.16 (q), 133.09 (q), 132.98 (q), 130.50 (q), 130.25 (t), 129.40 (t), 129.01 (t), 126.29 (t), 124.35 (t), 123.12 (t), 76.83 (t), 71.89 (q), 42.36 (s), 31.37 (p), 26.61 (p), 22.91 (p), 21.39 (p), 20.25 (p). HRMS (CI): *m/z* [M+Na]⁺ calcd for C₂₄H₂₆ONa: 353.1876; found: 353.1877. (2S,4R)-2-methyl-4-(p-tolyl)-1,4-dihydro-2H-benzo[f]isochromene (42a) and (2R,4S)-2-methyl-4-(p-tolyl)-1,4-dihydro-2H-benzo[f]isochromene (42b):

The compound was purified by flash column chromatography using 20-80% *n*-hexane in dichloromethane to afford a pair of diastereomers in 81% combined yield, The *cis* diastereomer was obtained in 45% yield as light yellow crystal. $R_{\rm f}$ = 0.43 (50% *n*-hexane in

dichloromethane). IR (neat): 3421, 3301, 3052, 3023, 2971, 2926, 2892, 2365, 1916, 1713, 1511, 1456, 1386, 1257, 1118, 948 cm⁻¹, ¹H NMR (400 MHz, CDCl₃): δ = 7.96 (d, J = 8.2Hz, 1H), 7.75 (d, J = 8.6Hz, 1H), 7.55-7.43 (m, 3H), 7.20 (d, J = 8.2Hz, 2H), 7.13 (d, J = 8.2Hz, 2H), 6.82 (d, J = 8.6Hz, 2H)1H), 5.83 (s, 1H), 4.13-4.05 (m, 1H), 3.21 (unresolved d of m, J = 16.1Hz, 1H), 3.05 (APP ddd, J = 16.1, 10.5, 2.0Hz, 1H), 2.32 (s, 3H), 1.50 (d, J = 6.2Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 139.65 (q), 138.04 (q), 135.27 (q), 132.32 (g), 131.80 (g), 129.51 (g), 129.43 (t), 129.12 (t), 128.63 (t), 126.43 (t), 126.13 (t), 125.67 (t), 124.90 (t), 123.06 (t), 81.30 (t), 71.14 (t), 33.38 (s), 22.35 (p), 21.42 (p). HRMS (CI): m/z [M+Na]⁺ calcd for C₂₁H₂₀ONa: 311.1406; found: 311.1409.

(2*S,4S*)-2-methyl-4-(p-tolyl)-1,4-dihydro-2*H*-benzo[*f*]isochromene (42c) and (2*R,4R*)-2-methyl-4-(*p*-tolyl)-1,4-dihydro-2*H*-benzo[*f*]isochromene (42d):

The *trans* diastereomer was isolated in 36% yield as a viscous yellow oil. $R_f = 0.29 (50\% n$ hexane in dichloromethane). IR (neat): 3052, 2972, 2923, 2892, 1917, 1511, 1446, 1387, 1119, DCl₃): $\delta = 7.98$ (d, *J*= 8.6Hz, 1H),

1062, 817, 769 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (d, *J* = 8.6Hz, 1H), 7.84 (dd, *J* = 7.8, 1.6Hz, 1H), 7.64 (d, *J* = 8.6Hz, 1H), 7.57-7.48 (m, 2H), 7.15 (d, *J* = 8.2Hz, 2H), 7.11 (d, *J* = 8.2Hz, 2H), 7.05 (d, *J* = 8.2Hz, 1H), 6.01 (s, 1H), 4.00 (dd of quartets, *J* = 10.2, 6.3, 3.6Hz, 1H), 3.21 (dd, *J* = 16.6, 3.7Hz, 1H), 2.92 (dd, *J* = 16.8, 10.2Hz, 1H), 2.33 (s, 3H), 1.34 (d, *J* = 6.3Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) (two aromatic quaternary carbons are overlapped): δ = 139.20 (q), 137.81 (q), 132.70 (q), 132.11 (q), 129.91 (q), 129.67 (t), 129.04 (t), 128.81 (t), 126.46 (t), 126.01 (t), 125.80 (t), 125.51 (t), 122.96 (t), 77.56 (t), 63.75 (t), 32.75 (s), 21.95 (p), 21.36 (p).

REFERENCES

1. For recent examples of heterocyclic natural products: (a) Zhang, J.; Jiang, Y.; Cao, Y.; Liu, J.; Zheng, D.; Chen, X.; Han, L.; Jiang, C.; Huang, X. *J. Nat. Prod.* **2013**, *76*, 2126. (b) Adelin, E.; Martin, M. T.; Cortial, S.; Retailleau, P.; Lumyong, S.; Ouazzani, J. *Phytochemistry*. **2013**, *93*, 170. (c) Igarashi, Y.; Zhou, T.; Sato, S.; Matsumoto, T.; Yu, L.; Oku, N. Org. Lett. **2013**, *15*, 5678. (d) Indananda, C.; Igarashi, Y.; Ikeda, M.; Oikawa, T.; Thamchaipenet, A. J. Antibiot. **2013**, *66*, 675. (e) Guo, W.; Peng, J.; Zhu, T.; Gu, Q.; Keyzers, R. A.; Li, D. *J. Nat. Prod.* **2013**, *76*, 2106.

2. (a) Hoffmann, R. W.; Giesen, V.; Fuest, M. *Liebigs Ann. Chem.* 1993, 629 - 639. (b) Brimble, M. A.; Pavia, G. S.; Stevenson, R. J. *Tetrahedron Lett.* 2002, 43, 1735 -1738. (c) Overman, L. E.; Malone, T. C.; Meier, G. P. *J. Am. Chem. Soc.* 1983, 105, 6993 -6994. Overman, L. E.; Burk, R. M. *Tetrahedron Lett*. 1984, 25, 5739 -5742. Flann, C.; Malone, T. C.; Overman, L. E. *J. Am. Chem. Soc.* 1987, 109, 6097 -6107. Daub, G. W.; Heerding, D. A.; Overman, L. E. *Tetrahedron* 1988, 44, 3919 -3930. (d) Agami, C.; Comesse, S.; Kadouri-Puchot, C. *J. Org. Chem.* 2002, 67, 2424 -2428.

3. Selected examples of Prins-type cyclizations toward heterocycles: (a) Olier, C.; Kaafarani, M.; Gastaldi, S. S.; Bertrand, M. P. *Tetrahedron* **2010**, *66*, 413–445. (b) Pastor, I. M.; Yus, M. *Curr. Org. Chem.* **2007**, *11*, 925–957. (c) Carballo, R. M.; Ramirez, M. A.; Rodriguez, M. L.; Martin, V. S.; Padron, J. L. *Org. Lett.* **2006**, *8*, 3837–3840. (d) Yadav, J. S.; Reddy, B. V. S.; Chaya, D. N.; Narayan Kumar, G. G. K. S.; Aravind, S.; Kunwar, A. C.; Madavi, C. *Tetrahedron Lett.* **2008**, *49*, 3330–3334. (e) Kishi, Y.; Nagura, H.; Inagi, S.; Fuchigami, T. *Chem. Commun.* **2008**, 3876–3878. (f) Yang, X.-F.; Mague, J. T.; Li, C.-J. *J. Org. Chem.* **2001**, *66*, 739–747.

4. Wright, A. E.; Botelho, J. C.; Guzmán, E.; Harmody, D.; Linley, P.; McCarthy, P. J.; Pitts, T. P.; Pomponi, S. A.; Reed, J. K. J. *Nat. Prod.* **2007**, 70, 412–416.

5. For reviews and examples about Prins cyclization to assemble tetrahydropyrans, see: (a) Han, X.; Peh, G.; Floreancig, P. E. *Eur. J. Org. Chem.* **2013**, 1193-1208. (b) Dalgard, J. E.; Rychnovsky, S. D. *J. Am. Chem. Soc.* **2004**, *126*, 15662-15663. (c) Tadpetch, K.; Rychnovsky, S. D. *Org. Lett.* **2008**, *10*, 4839–4842. (d) Kataoka, K.; Ode, Y.; Matsumoto, M.; Nokami, J. Tetrahedron **2006**, *62*, 2471–2483. (d) Chan, K. P.; Loh, T. P. *Tetrahedron Lett.* **2004**, *45*, 8387–8390.

6. Paterson, I.; Miller, N. A. Chem. Commun. 2008, 4708-4710.

7. Cui,Y.; Tu, W.; Floreancig, P. E. Tetrahedron 2010, 66, 4867-4873.

8. Yang, Z.; Zhang, B.; Zhao, G.; Yang, J.; Xie, X.; She, X. Org Lett. **2011**, *13*, 5916-5919.

9. Vintonyak, V. V.; Maier, M. E. Org Lett. 2008, 10, 6, 1239-1242.

10. Youngsaye, W.; Lowe, J. T.; Pohlki, F.; Ralifo, P.; Panek, J. S. Angew. Chem. Int. Ed. **2007**, *46*, 9211-9214.

11. Woo, S. K.; Kwon, M. S.; Lee, E. Angew. Chem. Int. Ed. **2008**, 47, 3242-3244.

12. Ulanovskaya, O. A.; Janjic, J.; Suzuki, M.; Sabharwal, S. S.; Schumacker, P. T.; Kron, S. J.; Kozmin, S. A. *Nature Chem. Biol.* **2008**, *4*, 418-424.

13. Custar, D. W.; Zabawa, T. P.; Hine, J.; Crews, C. W.; Scheidt, K. A. *J. Am. Chem. Soc.* **2009**, *131*, 12406-12414.

14. Florence, G. J.; Cadou, R, F. Tetrahedron Lett. 2010, 51, 5761-5763.

15. (a) Prins, H. J. *Chem. Weekbl.* **1919**, *16*, 1510. (b) Prins, H. J. *Chem. Weekbl.* **1919**, *16*, 1072.

16. Olier, C.; Kaafarani, M.; Gastaldi, S.; Bertrand, M. Tetrahedron **2010**, 66, 413–445.

17. Hanschke, E. Chem. Ber. 1955, 88, 7, 1053 – 1061.

18. Broeker, J. L.; Hoffmann, R. W.; Houk, K. N. J. Am. Chem. Soc. **1991**, *113*, 5006-5017.

19. (a) Lee, C.-H. A.; Loh, T. P. *Tetrahedron Lett.* **2006**, *47*, 1641. (b) Chan, K. P.; Loh, T. P. *Org. Lett.* **2005**, *7*, 4491. (c) Miranda, L. S. M.; Vasconcellos, M. L. A. A. *Synthesis* **2004**, 1767. (d) Miranda, L. S. M.; Marinho, B. G.; Leitao, S. G.; Matheus, M. E.; Fernandes, P. D.; Vasconcellos, M. L. A. A. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 1573. (e) Cho, Y. S.; Kim, H. Y.; Cha, J. H.; Pae, A. N.; Koh, H. Y.; Choi, J. H.; Chang, M. H. *Org. Lett.* **2002**, *4*, 2025. (f) Jaber, J. J.; Mitsui, K.; Rychnovsky, S. D. *J. Org. Chem.* **2001**, *66*, 4679.

20. (a) Roush, W. R.; Dilley, G. J. *Synlett* **2001**, 955-959. (b) Miranda, P. O.; Díaz, D. D.; Padron, J. I.; Bermejo, J.; Martin, V. S. *Org. Lett.* **2003**, *5*,

1979-1982. (c) Dobbs, A. P.; Martinovič, S. *Tetrahedron Lett.* **2002**, *43*, 7055-7057. (d) Jaber, J. J.; Mitsui, K.; Rychnovsky, S. D. *J. Org. Chem.* **2001**, 66, 4679-4686.

21. (a) Micheal, J. P. *Nat. Prod. Rep.* **2008**, *25*, 139, and references. (b) Watson, P. S.; Jiang, B.; Scott, B. *Org. Lett.* **2000**, *2*, 3679-3681.

22. Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000, 56, 3187-3856.

23. Carballo, R. M.; Ramirez, M. A.; Rodriguez, M. L.; Martin, V. S.; Padron, J. I. *Org Lett.* **2006**, *8*, No.17, 3837-3840.

24. (a) Miranda, P. O.; Carballo, R. M.; Martin,V. S.; Padron, J. I. *Org Lett.* **2009**, *11*, No. 2, 357-360. (b) Miranda, P. O.; Carballo, R. M.; Ramirez, M. A.; Martin,V. S.; Padron, J. I. *ARKIVOC.* **2007** (iv), 331-343. (c) Miranda, P. O.;Diaz, D. D.; Padron, J. I.; Bermejo, J.; Martin, V. S. *Org Lett.* **2003**, *5*, No. 11, 1979-1982.

25. (a) Shin, C.; Chavre, S. N.; Pae, A. N.; Cha, J. H.; Koh, H. Y.; Chang, M. H.; Choi, J. H.; Cho, Y. S. *Org. Lett.* **2005**, 7, No.15, 3283-3285. (b) Chavre, S. N.; Choo, H.; Cha, J. H.; Pae, A. N.; Choi, K.; Cho, Y. S. *Org. Lett.* **2006**, *8*, No.16, 3617-3619.

26. (a) Barry, C. S.; Bushby, N.; Harding, J. R.; Hughes, R. A.; Parker, G. D.; Roe, R.; Willis, C. L. *Chem. Commun.* **2005**, 3727–3729. (b) Jasti, R.; Anderson, C. D.; Rychnovsky, S. D. *J. Am. Chem. Soc.* **2005**, *127*, 9939– 9945. (c) Jasti, R.; Rychnovsky, S. D. *Org. Lett.* **2006**, *8*, 2175–2178. (d) Jasti, R.; Rychnovsky, S. D. *J. Am. Chem. Soc.* **2006**, *128*, 13640–13648.

27. (a) Jasti, R.; Anderson, C. D.; Rychnovsky, S. D. *J. Am. Chem. Soc.* 2005, 127, 9939–9945. (b) Jasti, R.; Rychnovsky, S. D. Org. Lett. 2006, 8, 2175–2178. (c) Jasti, R.; Rychnovsky, S. D.; *J. Am. Chem. Soc.* 2006, 128, 13640–13648. (d) Miranda, P. O.; Ramirez, M. A.; Martin, V. S.; Padron, J. I. Chem. Eur. J. 2008, 14, 6260–6268.

28. (a) Martinet, P.; Mousset, G.*Bull. Soc. Chim. Fr.* **1970**, 1071 -1076. (b) Overman, L. E. *Aldrichimica Acta* **1995**, 28, 107-120. (c) Overman, L. E. *Acc. Chem. Res.* **1992**, 25, 352-359.

29. (a)Hanaki, N.; Link,David, J. T.; MacMillan, W. C.; Overman, L. E.; Trankle, W. G.; Wurster, J. A. *Org. Lett*, **2000**, *2*, No. 2, 223-226. (b) Cohen, F.; MacMillan, D. W. C.; Overman, L. E.; Romero, A. *Org. Lett.* **2001**, *3*, 1225. (c) Hopkins, M. H.; Overman, L. E.; Rishton, G. M. J. Am. Chem. Soc. **1991**, *113*, 5354.

30. Hinkle, R. J.; Lewis, S. E. Org. Lett. 2013, 15 (16), 4070-4073.

31. Miranda, P. O.; Ramirez, M. A.; Padron, J. I.; Martin, V.S. *Tetrahedron Lett.* **2006**, *47*, 283-286.

32. Miranda, P. O.; Ramirez, M. A.; Martin, V. S.; Padron, J. I. *Org. Lett.* **2006**, 8, 1633–1636.

33. Myers, E. L.; Butts, C. P.; Aggarwal, V. K. *Chem. Commun.* **2006**, 4434-4436.

34. Result was from : Nofi, C. P.

Supporting information for:

Two-Component, Four Reaction Domino Sequence toward Novel Tricyclic 1,4-dihydro-2H-benzo[f]isochromenes.

YC-90 pure 1-(4-methoxyphenyl)-6-methylhept-3-yne-2,6-diol; CDCl3; 8/28/2013

	Mass Spectrum Lis	st Report	79
Analysis Info			
Analysis Name	YC-158_pos_000001.d	Acquisition Date	7/22/2014 3:50:26 PM
Method	XMASS_Method	Operator	FTMS_USER
Sample Name:	YC-158_pos	Instrument	apex-Qe
	YC-158_pos: in 1:1 THF:MeOH w/ NaCl.		
Acquisition Param	eter		

Sample: YC-158

Exact Mass of = (C15H20O3)Na+ : 271.130466u Observed Mass = 271.130720u Difference = 1.0 ppm

m/z	1
169.088238	5184063
169.450742	17475037
171.593917	11787612
190.095748	4814323
206.906016	9108264
255.156937	9631728
271.130720	34755208
288.289927	111551305
288.290361	10609481
288.290606	4874057
289. 2 93384	17245013
297.240377	7556023
301.554436	7889901
304.284988	6040079
316.320426	5792937
316.320754	9798825
316.321269	118170793
317.324793	17724598
341.170880	6474721
341.172781	15619553
343.169711	7332345

m/z	Ι
343.178760	7321081
343.180076	17365497
343.184817	8525305
343.185426	41190905
343.186446	334603769
343.188056	476161529
343.189291	12908025
344.189483	26719749
344.190398	15643141
344.191530	97379845
344,192176	9209349
344.192523	4882949
345.195144	10063377
357.204004	37602968
358.207477	3007491
401.28/918	28/88/81
415.230437	9279022
415.244210	219670199
415.245754	28022028
415.240010	11606276
415 247607	6285460
416 248389	6858907
416,249335	71641243
416.250265	5068955
417.252839	5927074
417.261766	5487778
419.277412	8331440
429.260512	8415474
429.261551	127969522
429.262539	10922226
429.263068	4804850
430.265088	26806520
441.353716	5097789
441.354337	11913533
441.355419	177219901
441.356490	14625085
441.357051	6486333
442,358965	38267203
463.303711	21313977
473.345558	12315117
479.229382	13879819
485,288104	10/0/498
487.299909	1021252
407.300722	13204020
467.301933	602712629
487 304542	50178612
487 305241	20949556
487.305927	11135540
487.306629	6974004
487.307313	4844084
488.306836	177154617
488.308027	15755833
488.308713	6554169
489.310484	18872894
489.319259	59517502
489.320534	5032510
490,322755	12851779
501.319460	5102201
507.329924	36743831

m/z	I
508.333426	8313500
513.413380	8395445
523.255676	28158694
551,356215	37792635
552.359624	8403841
559.361170	75279273
560.364724	19041199
567.281971	27675609
595.382447	26979480
596.385929	5858463
611.308216	10640660
631.419053	5836220
639,408903	12221951
655.334700	5252739
683.435132	4967254
685.434281	7335779
685.436441	50638691
686.439991	15142762

Analysis Info

Analysis Name	YC-140_pos_000001.d	Acquisition Date	7/22/2014 1:40:19 PM
Method	XMASS_Method	Operator	FTMS_USER
Sample Name:	YC-140_pos	Instrument	apex-Qe
	YC-140_pos: in 1:1 THF:MeOH w/ NaCl. (re-tune)		

Acquisition Parameter

Sample: YC-140

Exact Mass of = (C14H17ClO2)Na+ : 275.080929u Observed Mass = 275.081276u Difference = 1.3 ppm

m/z	I
168.041034	11980777
204.031831	11470152
275.081276	13758114
288.289954	124871465
289.293381	16405300
292.768337	12054362
316.320489	7073900
316.320714	16065644
316.321274	166618220
316.322108	6202476
317.324847	22824056
329.229623	7806215
329.230195	56255751
347.137344	8457690
347.138654	416654810
348.141525	7857638
348.142210	74393062
349.134805	4886001
349.135114	12191217
349.135801	130786801
349.136452	10372593

IN/Z	1
350,139334	12670460
361.153769	7591543
361.154472	74835575
362.157914	7017090
363.151697	15726220
369.297993	42346190
401.288048	16173070
419.193623	4992182
419,194636	9966774
419.196155	486844598
419 197494	17504438
410 108034	0185462
410 108552	5664050
419.190333	11220050
419.277439	11339939
420.198771	8337399
420.199756	106211519
421.193435	145434824
421.203375	5278921
422.197052	28166354
433.211063	4860215
433.212128	57485623
434.215756	7911744
435.191626	14555465
435.209387	10654025
437.194109	8227163
463.303715	46934601
464.307214	6387282
473,345599	24029862
479 228159	5229277
479 220132	51538653
401 253834	412527438
491.233034	412327430
491.233079	7520524
491.2.00409	1009004
491.237137	4791110
492.257410	113257303
493.251011	134064993
493.260918	5084513
494.254686	29535082
507.328562	8821733
507.329867	92941285
508.333514	18443247
523.255595	86584441
524.255489	5932162
524.259229	7820418
545.403299	15101246
551.354394	7757169
551.356106	101985649
551.357715	8326513
552,359645	20008313
563.309889	8531410
563.311667	97168850
563.313422	7089618
564.315373	19103194
565,308942	18492898
567 280257	8010071
567 281942	84256502
568 201003	1077207
560 2007	9012071
505 280202	0004309
395.380383	7900853
595.382299	83766965
595.384280	5840565

____86____

Mass Spectrum List Report ______87

m/z	1
596.385997	14659259
611.306312	5234448
611.308268	33771280
635.369585	6641535
639.406686	6123407
639.408875	43708303
640.412075	5909395
655,334732	10778568
683.435192	10418201
685.430671	6238238
685.431959	9826334
685.435794	312782878
685.439777	7589918
685.441269	4939806
686.437131	10661920
686.439507	129249312
686.442130	9170976
687.443451	10655779

Analysis Info

Analysis Name	YC-168_pos_000001.d	Acquisition Date	7/22/2014 3:55:59 PM
Method	XMASS_Method	Operator	FTMS_USER
Sample Name:	YC-168_pos	Instrument	apex-Qe
	YC-168_pos: in 1:1 THF:MeOH w/ NaCl.		
anuisition Derom	~f~x		

Acquisition Parameter

Sample: YC-168 Exact Mass of = (C15H20O2)Na+ : 255.135551u Observed Mass = 255.135776u

Difference = < 1.0 ppm

m/z	1
175.253696	5785345
175.670086	15492313
220.086356	16995741
255.135776	79430203
255.136126	6510139
255.156988	4980027
256.139188	8248898
288.289562	12708706
288.289985	104096610
289.293422	13274989
316.321346	98280600
317.324838	15402148
327.193348	252093718
328.196222	4995361
328.196843	44401953
329.229698	8274221,
329.230210	86074669
330.233670	8824121
332.316404	5794641
341.209151	47343030
342.212607	6903233

	-
m/z	I
346.157401	7072237
383.277424	11298667
385.235544	10633086
399.237993	4818944
399.246042	4329472
399.246462	5754880
309 247738	53012480
300 248178	42006640
300 240253	25282560
200 250540	754262260
200 251422	52585000
399.231433	33363920
399.231909	24430392
399.252380	13813760
399.252839	9553920
399.253300	6985728
399.253752	5216256
400.251652	14608393
400.252930	5265417
400.254191	123185161
400.254939	12163081
400.255432	5773321
401.255377	5797906
401.257930	14839826
401.285295	6243346
401.287952	36259858
402.291323	9652251
413.263984	8943740
413.266707	46966908
414.270247	7381125
415.246145	11122830
425.288043	8458468
435.345229	5716280
443,277522	12114297
455.335089	5950939
457.293191	21076459
458.296561	4317683
463.303821	11395612
468.309241	13027908
471.304456	14445148
471 305061	9149020
471 305911	15968860
471 306435	25553500
471 308248	843623004
471.311441	8419932
471 312083	5929564
471 312740	4488796
472 308126	7332452
472 3000120	5375588
472 310581	14166628
472.310381	244402000
472,311823	244492900
472.312990	0652936
472 215657	7026020
413.313333	21640170
413,343312	21040172
4/4.349100	016510
4/9.229502	11/91004
507.330077	20347772
508.333494	4864899
519.309006	6030298
523.255816	18758649
533.324683	6450247

_____92 ____

m/z	1
540,366906	4379772
543.364697	7802003
543,366371	88583315
543.368007	5975187
544.369842	24153243
545.403336	7226531
551,356387	29904 0 79
552.359759	6827 2 23
567.282117	23006533
587.429258	4385236
595.382668	19754507
596.386109	5826065
611.308429	9289331
639.409107	9715477
655.334807	4482911
683.435357	4595636
685.436775	33107895
686.440286	10706873

_____ 93 ____

Analysis Info

Analysis Name	YC-183_pos_000001.d	Acquisition Date	7/22/2014 4:00:34 PM
Method	XMASS_Method	Operator	FTMS_USER
Sample Name:	YC-183_pos	Instrument	apex-Qe
	YC-183_pos: in 1:1 THF:MeOH w/ NaCl		
oquisition Param	otor		

Acquisition Parameter

Sample: YC-183

Exact Mass of = (C16H22O2)Na+ : 269.151201u Observed Mass = 269.151395u Difference = < 1.0 ppm

m/z	I
169.806188	6695828
170.174775	19924536
208.397999	18350967
269.151012	16237206
269.151395	114057878
269.151777	9878166
270.154866	10972831
288,289942	106488664
288.290354	10662744
289.293386	12462947
306.233465	17323051
316.320480	5631147
316.320728	10953899
316.321291	117793963
316.321819	10312875
317.324848	15342775
329.229556	9260372
329.230139	87500116
329.230707	7572820
330.233646	7915873
334.310954	5532567

	т
	I
338.209556	6392267
341.206903	5070324
341 207244	7495156
241 207500	12452264
341.207390	12433304
341.207882	14898070
341.208230	34219508
341.208908	590259700
341.209526	51930612
341 209872	21964276
241 210214	17246969
341,210214	12340000
341.210555	7638516
341.210894	5436916
342.211734	11101697
342.212396	119465473
342 213010	10540545
342 215045	5000915
343.213943	3900013
355.224032	0440623
355.224743	57697967
356,228228	6237884
369.298083	10125161
383.277443	5978141
399 251184	5704931
101 207741	127922600
401.207741	137632099
401.288515	13236475
401.288992	5402875
402.291258	20478215
413.263533	5486984
413.264035	8067464
413 264521	14051720
413 264070	17093990
413.204970	17505000
413.265523	39528840
413.266438	636004744
413.267366	48441736
413.267896	20834696
413.268402	11831688
413 268898	7526792
413 260207	5061000
413.207377	5001000
414.208528	3929303
414.269010	13781395
414.269942	162441619
414.271403	5216659
415.273612	11882911
419.277467	6439372
475 788028	8653326
423.200020	7754015
427.201334	7334913
427.282.360	84011555
428.285882	15100462
429.261866	12112440
441.354580	7871156
441.355593	81455796
442 350101	13017700
462 202770	20142020
403.303778	20142970
4/3.344208	6532041
473.345460	59321289
474.349067	9810896
479.229441	14191603
485,323934	699182107
485 326382	12560628
105.540304	7071257
405 0000 10	7034032
485.327742	49/8716
486.327471	226536482

m/z	I
487.331188	26422312
507.329980	40340632
508.333502	6890653
513,413482	5797046
523.255772	20532449
545.403267	16788788
551.356271	41422152
552.359697	6858059
557,380257	6327643
557.381982	62745947
558.385547	12406110
567.282060	23932280
595.382515	26521034
596.385941	4966861
611.308350	7904762
639.408997	9752147
685.436543	36351712
686.440125	9025251

CPN-40 propylene oxide with alkyne monoalcohol to form diol (racemic)

Analysis Info

Analysis Name	YC-193_pos_000001.d	Acquisition Date	7/22/2014 4:33:48 PM
Method	XMASS_Method	Operator	FTMS_USER
Sample Name:	YC-193_pos	Instrument	apex-Qe
	YC-193_pos: in 1:1 THF:MeOH w/ NaCl		
equipition Derem			

Acquisition Parameter

Sample: YC-193

Exact Mass of = (C13H16O2)Na+ : 227.104251u Observed Mass = 227.104500u Difference = 1.1 ppm

m/z	I
248.809634	4213230
273.285160	13912797
285.145333	16274794
285.146206	151642986
285.146641	12919658
285.146884	6087530
286.149668	49836918
286.150094	4501366
288.288946	14042513
288.289813	139633553
288.290246	14734225
288.290472	6819729
288.290727	3824017
289.292346	4278942
289.293319	13587358
299.162040	25052190
301.551056	13921341
304.284931	8040545
313.177763	12944601
316.320030	5318915
316.320313	8629507

m/z	1
316 320626	13954307
316 321161	207070467
316 321663	10/12227
316 321005	8455427
316 333366	453427
310.322200	4077071
317.324157	7073040
317.324661	40441104
332.316260	4300758
343.186070	4120158
343.186415	6223454
343.186754	10561118
343,187080	13317726
343.187425	33629790
343.188098	485271134
343.188725	40691294
343.189080	17827422
343.189423	9889374
343.189765	6174302
343.190108	4177502
344,191584	86959722
345,195069	6474358
355 282238	15048426
357 202369	11601663
357 202302	16852735
357 202710	480203455
357.205754	409203433
358 206531	10524426
358 200331	07010659
350,207212	27019038
339.210739	6625407
371.210030	45672325
371.219302	43072333
372.223073	2627152
373.197202	3037133
373.19/3/9	12196077
373.198005	13180977
373.198720	1529/1109
373.199893	4923297
374.201618	4177835
314.202213	24340395
385.234530	5136398
385.235311	30222350
386.238726	5535767
388.542976	5866538
401.230293	5663888
415.244978	4468984
415.245896	32098552
416.249358	6523135
419.277263	13670676
425.287849	9736509
429.261640	13257047
463.303493	36112944
464.306923	7821879
477.261701	3760778
479.229212	23816854
480.232629	3550877
507.328290	3707730
507.329671	53701458
507.331033	4365138
508,333160	12118872
523,255458	30682047
524,258887	4970438

,	
m/z	1
551.354444	4902018
551.355944	54422658
552.359370	11742345
567.281727	28585201
568.285168	5342456
595.382197	32443826
596.385661	7527865
605.490150	3581430
611.307956	12172828
639.408625	15335109
640.411943	4719306
650.689638	3671805
655.334375	5472018
659.334850	37302051
660.338439	12013351
683.434765	7092075
685.436217	30117743
686.439671	10616688

YC-193 pure; diol form alkyne monoalcohol and (S)-(-)-propylene oxide; cdc13; 6/22/2014

Analysis Info

Analysis Name Method	YC-193_pos_000001.d XMASS_Method	Acquisition Date Operator	7/22/2014 4:33:48 PM FTMS_USER
Sample Name:	YC-193_pos	Instrument	apex-Qe
Acquisition Param	YC-193_pos: in 1:1 THF:MeOH w/ NaCl		

·····

Sample: YC-193

Exact Mass of = (C13H16O2)Na+ : 227.104251u Observed Mass = 227.104500u Difference = 1.1 ppm

m/z	I
248.809634	4213230
273.285160	13912797
285.145333	16274794
285.146206	151642986
285.146641	12919658
285.146884	6087530
286.149668	49836918
286.150094	4501366
288.288946	14042513
288.289813	139633553
288.290246	14734225
288.290472	6819729
288.290727	3824017
289.292346	4278942
289.293319	13587358
299.162040	25052190
301.551056	13921341
304.284931	8040545
313.177763	12944601
316.320030	5318915
316.320313	8629507

m/z	I
316.320626	13954307
316.321161	207070467
316.321663	19412227
316.321977	8455427
316.322266	4677891
317.324157	7073040
317.324661	40441104
332.316260	4300758
343.186070	4120158
343.186415	6223454
343.186754	10561118
343,187080	13317726
343.187425	33629790
343.188098	485271134
343.188725	40691294
343.189080	17827422
343,189423	9889374
343.189765	6174302
343.190108	4177502
344,191384	80939722
343,193009	15049436
353.262256	13046420
357 202309	16852735
357 203734	489203455
358.206184	4430602
358.206531	10524426
358.207212	97019658
359.210739	6464277
371.218856	6635407
371.219582	45672335
372.223073	7635864
373.197202	3637153
373.197579	6559649
373.198005	13186977
373.198720	1529/1109
373.199893	4923297
374.201018	24340305
385 234530	5136398
385 235311	30222350
386.238726	5535767
388.542976	5866538
401.230293	5663888
415,244978	4468984
415.245896	32098552
416.249358	6523135
419.277263	13670676
425.287849	9736509
429.261640	13257047
463.303493	36112944
404.300923	1821819
+//.201/01 170 220212	5700778 23816854
480 232620	3550877
507.328290	3707730
507.329671	53701458
507.331033	4365138
508,333160	12118872
523.255458	30682047
524.258887	4970438

Bruker Daltonics DataAnalysis 3.4

m/z	I
551.354444	4902018
551.355944	54422658
552.359370	11742345
567,281727	28585201
568.285168	5342456
595.382197	32443826
596.385661	7527865
605.490150	3581430
611.307956	12172828
639.408625	15335109
640.411943	471930 6
650.689638	3671805
655.334375	5472018
659.334850	37302051
660.338439	12013351
683.434765	7092075
685.436217	30117743
686,439671	10616688

)-07.€ L. E.	<pre>CC-148 pure pdt; methoxy-sub. alkymediol rith henylpropionaldehyde to 1 form tricyclic 0 isochromenes; cdcl3; 1/19/2014 Behpen&&-Addl2 292 1 K</pre>
	۲.21 { ۲.06 { ۲.05 { ۲.13 { ۳.21 } ۳.21 } ۳.21 }	
	n) <u>}.00.1</u> An <u>}.00.</u> £	sssing 22768 me 1 minute
38a-1 38a-1 ormula: C ₂₄ H ₂₆ O ₂ ormula: 346.47	Q Q Q Q Q Q Q Q Q Q Q Q Q Q	OBSERVE H1, 399.8398924 DATA FROCT FT size Total ti
	9	FULSE SEQUENCE Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 2.556 sec Width 6410.3 Hz 8 repetitions

XC-148 pure pdt; methoxy-diol with phenylpropionaldehyde to form tricyclic isochromene; cdcl3; 6/8/2014

eonetlimenet7%

Analysis Info

Analysis Name	YC-148_pos_000001.d	Acquisition Date	7/22/2014 3:46:33 PM
Method	XMASS_Method	Operator	FTMS_USER
Sample Name:	YC-148_pos	Instrument	apex-Qe
	YC-148_pos: in 1:1 THF:MeOH w/ NaCl		
anulation Darom			

Acquisition Parameter

Sample: YC-148

Exact Mass of = (C24H26O2)Na+ : 369.182501u Observed Mass = 369.182885u Difference = 1.0 ppm

m/z	1
288.288883	11806682
288.289797	216114138
288.290231	20902874
288.290474	9724890
288.290726	5304282
288.290970	3346394
289.293294	16645097
304.284452	3480522
304.284882	17994954
316.320013	15123838
316.321080	202745214
317.323461	4242829
317.324063	4531597
317.324589	56657293
332.316177	36353634
333.319635	5422704
343.169618	12824302
345.184554	4118278
345.185192	30832390
346.188634	5783314
360.324056	5271462

mla	т
360 347563	4506647
360 187885	4390047
277 247508	3371524
375 250080	4850040
292 141052	5813340
200 5/2/2/	4125922
202 202016	4123623
112 266509	67907406
413.200306	6011144
413.207307	13465860
414.27(3.0.0)	3400086
419.270244	27257126
417.277177	4750851
420.280303	10860040
421,233041	4254021
425.207020	4204021
433.202939	5070206
433.344937	5740930
437.192724	65137026
437 194806	4659586
438 107232	13560100
430 203677	13298061
441 296995	4809112
441,297890	42985880
442 301334	9404830
453.167840	8698334
455 313668	7737836
463.302211	4432418
463 303390	55994914
463.304545	4543010
464.306877	11102761
479.227877	3560099
479.229100	37415587
480.228786	3856044
480.232544	4819628
495.266304	34343744
496.269681	8248138
507.224108	3969984
507.328209	5663681
507.329575	74017729
507.330981	5217217
508.333110	17423308
523.253901	4177013
523.255342	47000693
524.255044	4441217
524.258817	6431873
540.426364	15392057
541.429801	4342084
548.467852	9649554
551.355806	71347633
552.359301	17186236
554.551297	4041171
561.397903	7521818
567.279856	3884627
567.281570	48918099
567.283335	3735123
568.281346	4344413
568.285075	7269981
568.457668	5879390
582.403168	3354327
595.381995	51883826

m/z	Ι
596.385543	12308280
605.490292	5465959
611.307848	18460543
612.311269	3569539
619.439737	8830875
639.408421	26685376
640.411844	6768577
655.334193	8429510
677.481659	7190459
683.434624	10061750
685.435558	17948254 8
685.439070	6098868
686.439213	71135156
687.442918	9156531
699.360403	4435881
727.460746	4918177
735.523416	5835686
793.565191	3736147

XC-142 pure pdt; methoxy-diol with 4-nitro-benzaldehyde to form tricyclic isochromene; cdcl3; 6/10/2014

Mass Spectrum List Report 121 Analysis Info Analysis Name YC-142_pos_000001.d Acquisition Date 7/22/2014 3:34:49 PM Method XMASS_Method Operator FTMS_USER Sample Name: YC-142_pos Instrument apex-Qe

YC-142_pos: in 1:1 THF:MeOH w/ NaCl..

Acquisition Parameter

Sample: YC-142

Exact Mass of = (C22H21NO4)Na+ : 386.136279u Observed Mass = 386.136587u Difference = < 1.0 ppm

m/z	I
286.191675	3115859
288.288930	4718957
288.289853	61522797
289.292821	2802553
289.293244	20931449
304.284850	10361915
316.320056	7855324
316.321108	105227484
317.324048	4104426
317.324575	30065898
332.316151	23492020
333.319591	3288513
346.144075	8227432
360.324018	7168788
360.347520	2485012
364.154559	32511808
365.158012	5802827
372,347536	3210651
386.136587	6571052
413.264995	2479404
413.265538	5198124

2:23:12 PM

m/z	I
413.266445	65530156
413.267357	5220652
414.269947	14047541
419.277156	12151137
420.280515	2507114
421.232902	26913138
422.236302	3727738
424.451723	3946893
425.28/748	3597716
433.241197	2770903
433.202892	4023783
433.344670	2451282
437 103720	35744247
438 197182	6494719
441.297897	14637592
442.301297	3064864
452.482920	4029041
463.303373	28355269
464.306830	5688013
479.121790	15010621
479,229002	33401662
480.125152	3412805
480.228702	3321670
480.232453	4542278
495.266211	34401207
496.269602	9071550
503.355925	3629043
507.224071	3363855
507.328297	3013648
507.329563	36801552
508.333022	8420376
523.255222	41043140
574.254952 574.258708	501/763
525 252220	2526866
540 426241	14150909
541.429699	3760388
548.467731	6716725
551,328931	4163912
551.355776	36719944
552,359202	8666447
553.390109	9213270
554.393454	2526045
554.551131	3214686
561.397764	9655692
567.281461	41266611
568.281210	3576249
568.284903	6997433
568.457513	48/6/30
509.278404	2010010
505 281007	2342100
506 385380	6113898
611 307681	16023233
612.311066	2817222
619,439649	11665134
620,443050	2733812
639.408287	13913943
640.411601	3402588
655.333943	7610274

l

m/z	Ι
677.481501	9525246
683.434333	6430740
685.430142	2545692
685.431355	3964956
685.432723	6959132
685.435444	139505692
685.437888	11063324
685.439281	4841500
686.439049	57241631
686.441449	4239391
687.442683	7487523
699.360182	5075017
727.460245	2860176
735.523285	7717023
736.526128	2705057
793.564767	5991712
794.568010	2497315
851.606376	3177077

YC-144 pure pdt; methoxy-diol with 4-CF3-benzaldehyde to form tricyclic isochromene; cdcl3; 6/10/2014

XC-79 pure pdt; methoxy-diol with 4-Br-benzaldebyde to form tricyclic isochromene; cdcl3; 6/11/2014

	Mass Spectrum Li	st Report	130
Analysis Info			
Analysis Name Method Sample Name:	YC-79_pos_000001.d XMASS_Method YC-79_pos	Acquisition Date Operator Instrument	7/22/2014 11:24:58 AM FTMS_USER apex-Qe
Acquisition Param	YC-79_pos: in 1:1 THF/MeOH w/ NaCl.	· · · ·	- F

Sample: YC-79

Exact Mass of = (C22H21BrO2)Na+ : 419.061714u Observed Mass = 419.061803u Difference = < 1.0 ppm

m/z	I
209.440041	956572
215.089118	3091774
381.067247	867619
395.064210	1505140
397.062172	1247103
413.266335	3283671
419.061803	2448119
421.059762	2515713
430.389190	2424117
435.202567	1238096
435.344570	1213009
437,193502	6100827
438.196911	1596769
441.297566	2613107
452.482664	913847
453.167455	2738620
463.197464	977917
463.303052	2868222
469.328874	3910696
470.332242	1113904
477.267083	1306212

m/7	T
470 228755	1971292
419.220133	014001
400.232107	910091
403.302001	801091
497.300142	804104
507.223603	803382
507.329234	5057887
508.332620	1403240
517.371166	940985
521.293252	1564124
523.254878	9239022
524.254528	1388791
524.258291	1826807
525.251827	798464
540.425867	1108871
549.246859	906196
550.628475	2932447
551,355360	7920358
551.631847	1087976
552.358679	2296558
554.371227	925183
561.397317	1343033
563.262453	978248
565.319425	1193048
567.281010	12430183
568.280705	1792367
568.284461	2526063
569.277924	1099383
583.392238	910812
595.381464	8166438
596.384923	2327084
605.365886	1973338
605.423464	1284443
609.345578	820589
611.307161	12369013
612.306871	1288058
612.310594	3050618
612.413130	1620090
612.914610	889980
613.304049	1049982
633.397178	1024707
639.407729	5692627
640.411090	1986261
641.433881	1949400
641.935643	1424601
649.449526	1269993
655.333346	9088243
656.332902	1090804
656.336734	2279156
657.330175	850422
661.428382	1140988
663.453506	2986238
664.456812	1303807
670.454855	1953542
670.956417	1311494
677.480802	824075
683.433784	2978063
684.437147	1073168
685.432635	963856
685.435254	12635408
685.437871	852240
686.438741	4791569

131.....

m/z	I
687.442101	1052689
699.359487	5371157
699.475699	1561365
699.977397	1130773
700.362886	1295637
701.409262	2032917
702.412652	795669
727.459926	1142038
728.496527	1608982
728.998328	1173271
743.385563	2405656
757.517521	1242911
758.019104	992031
787.411869	834886
861.539934	979145
877.534690	6260568
878.537984	3355489
879.541454	845675

YC-138 pure pdt; cl-diol with propionaldehyde to form tricyclic isochromene; cdcl3; 6/8/2014

ΰ

YC-122 purified the 3th time; fr? ; cl-diol with 2-methyl-butyraldehyde to form tricyclic (sochromene; cdcl3; 3/12/2014 Automation directory:

Pulse Sequence: s2pul

ΰ

YC-122 mixture; cl-diol with 2-methylbutyraldehyde to form tricyclic isochromene; cdcl3; 3/13/2014

YC-122 pure; cl-ciol with 2-methyl-butyraldehyde to form tricyclic isochromene; cdc]3; 3/12/2014 Automation directory:

Pulse Sequence: APT

YC-141 pure pdt; c1-diol with phenylpropionaldehyde to form tricyclic isochromene; cdc13; 6/8/2014

YC-136 pure pdt; cl-diol with p-nitro-benzaldehyde to form tricyclic isochromene; cdc13; 6/17/2014

YC-137 pure pdt; cl-diol with 4-CF3-benzaldehyde to form tricyclic isochromene; cdc13; 6/8/2014

YC-96 pure 4-(4-bromoghenyl)-9-chloro-2,2-dimethyl-1,4-dihydro-2-H-benzo[f]isochromene; CDC13; 9/12/2013

>

Mass Spectrum	List Report
---------------	-------------

Analysis Info

Analysis Name	YC-135_pos_000001.d	Acquisition Date	7/22/2014 11:39:22 AM
Method	XMASS_Method	Operator	FTMS_USER
Sample Name:	YC-135_pos	Instrument	apex-Qe
	YC-135_pos: in 1:1 THF/MeOH w/ NaCl.		-
equisition Param			

Acquisition Parameter

Sample: YC-135

Exact Mass of = (C21H18BrClO)Na+ : 423.012177u **Observed Mass = 423.012392u** Difference = < 1.0 ppm

m/z	I
208.398141	5751105
215.089161	8268868
288.289858	17828588
289.293252	2935542
316.321243	13452327
360.323906	3321452
393.297819	3065399
399.014810	11767943
401.012741	12001442
403.009820	3757246
413.264319	4925770
413.265301	12126538
413.266250	206383434
413.267128	17942858
413.267654	7678282
413.268144	4202826
414.268825	4233560
414.269696	46999896
415.273221	4471142
419.277049	5893532
423.012392	9392590

Mass Spectrum List Report _____

m/z	I
425.010368	8980968
425.287650	6170092
427.007503	3044354
427.245801	2966022
429.240443	7027232
430.389371	8854063
433.241119	4847188
435,202766	10297965
435.344727	13228655
436.348153	3180150
437.193003	20084039
438.197140	102729042
441.297000	25774701
442.301074	4122437
455 313444	3660646
457.271663	4097918
463.197653	7023554
463.303171	25963459
464.306648	5885903
469.329074	14646279
470.332456	3858450
477.267309	7367772
479.228856	48835697
479.230031	4244593
480.228613	5833851
480.232349	7500923
481.225862	3845253
507.223903	6497658
507.329327	48000379
507.330619	4089211
508.332823	6202214
521.295342	72722200
524 254770	8701558
524.258472	13360646
525,252060	5584397
540.426201	6254205
548.467656	3797684
550.628796	4430530
551.355531	61468359
551.357174	4183751
552.358967	17288910
553.459411	6366933
565.319815	4637471
567.279335	4337451
567.281126	78491435
567.282885	6008619
568.281046	9307953
560 279240	6010670
560 381516	3144504
593 407628	3635134
595.381667	49901512
596.385269	14442445
611.305322	3694616
611.307330	48230424
611.309397	3571736
612.307145	4992029
612.310840	10190877
613.304394	3330082

Mass Spectrum List Report

m/z	I
639.407998	27431059
640.411486	7897238
655.333656	24965323
656.337218	6080719
683.434196	10510612
684,437560	3668246
685.435563	35377432
686.439093	13955354
699.359857	11374892
700.363283	2990381
727.460261	3209522
743.386064	3986727
803.543189	24523072
804.546522	11600195
831.574507	14066126
832.577851	7604694
859.605678	3839720
877.535089	4178900

YC-187 pure pdt; mono-methyl-sub. alkynediol with phenylpropionaldehyde to form tricyclic isochromenes; cdc13; 7/20/2014

	Mass Spectrum Li	ist Report	163
Analysis Info			
Analysis Name	YC-187_pos_000001.d	Acquisition Date	7/22/2014 4:15:13 PM
Method	XMASS_Method	Operator	FTMS_USER
Sample Name:	YC-187_pos	Instrument	apex-Qe
	YC-187_pos: in 1:1 THF:MeOH w/ NaCl.		-
Acquisition Param	eter		

Sample: YC-187

Exact Mass of = (C24H26O)Na+ : 353.187587u Observed Mass = 353.187804u Difference = < 1.0 ppm

m/z	I
174.370852	4190871
192.463079	3839788
288.288604	12192727
288.289278	19383255
288.289801	202580951
288.290478	8297431
288.290724	5051351
289.292080	3492325
289.293299	12465125
304.284858	17153212
316.320298	41473384
316.320523	43271528
316.321073	287483240
316.321822	12039529
316.322114	7073129
316.322405	4598121
317.323588	8405623
317.324599	28767607
318.328014	44983 09
329.190309	5220890
332.315531	4225603

Mass Spectrum List Report

m/z	1
332.316145	37238339
333.319589	5496400
338,303244	3423375
353,187804	46122807
354,191236	9088833
360.324021	4731772
360.347525	6081404
366 278928	4050864
372 347552	6517729
375 250924	4323319
388 543439	6277201
399.250935	7354512
413.266549	28846299
414.269975	5817568
419.277145	23996665
420.280513	4336895
425.287748	4390168
433.241198	3606850
435 202872	5184844
435.344886	5773645
437.192164	4870487
437.193628	139831639
438,196215	3549532
438.197131	32155996
441.297933	12753261
442.301311	3343731
447.229766	43461008
447.230850	3572112
448.233215	11934102
452,482959	3527088
453.167775	15776180
454.171214	3464635
463.302197	4358649
463.303344	54159865
463.304514	4139513
464.306800	12024320
477.267465	3787368
479.229057	35449466
480.228727	3953283
480.232480	5188227
495.266312	10736405
507.224061	4261780
507.329523	71379861
508.333039	16505760
523.255297	40102981
524.254956	4556881
524.258719	6544465
540.426256	26053892
541.429709	6778127
548.467746	15932762
549.471153	5116261
551.355715	78720377
551.357271	6892921
552.359203	20499843
554.551185	4649370
267.279894	3698197
567.281511	43593237
208.281100	4/12990
208.284933	1900094
JOB.43/JJD 576/00040	5172060
J10.477000	21/2000

Mass Spectrum List Report

m/z	Ι
595.381910	57994983
595.383783	4808423
596.385442	14622444
605,490304	4461336
611.307768	16662317
612.311168	3480369
639.408331	26226533
640,411692	7446373
653,342747	3941227
655.334042	8931179
683.434481	12656488
684.437880	4273000
685,432123	4284264
685.435665	116502376
686.439252	46903144
687,442765	6506345
699.360303	5006189
727.460686	4892574

YC-186 pure; mono-methyl sub. diol with p-nitro-benzaldehyde to form tricyclic isochromenes; cdc13; 7/17/2014

 \sum

YC-184 pure pdt; mono-methyl sub. diol with 4-bromo-benzaldehyde to form tricyclic isochromene; cdcl3; 6/8/2014

YC-185 pure pdt; mono-methyl sub. diol with 4-methyl-benzaldehyde to form tricyclic isochromene; cdc13; 6/8/2014

Mass Spectrum List Report 175 Analysis Info 7/22/2014 4:08:48 PM Analysis Name YC-185_pos_000001.d Acquisition Date FTMS_USER Method XMASS Method Operator Sample Name: YC-185_pos Instrument apex-Qe YC-185_pos: in 1:1 THF:MeOH w/ NaCl.. **Acquisition Parameter**

Sample: YC-183

Exact Mass of = (C23H24O)Na+ : 339.171936u Observed Mass = 339.172220u Difference = < 1.0 ppm

m/z	1
192.463085	6897427
288.288646	7973777
288.289340	12082065
288.289801	203465617
288.290232	19886993
288.290473	8908689
288.290726	4899729
289.293279	30782366
299.178593	4072863
299.178891	3778079
299.179633	35845151
300.183052	8233004
304.284886	17083491
315.174654	4883189
316.320273	35304709
316.320561	32789765
316.321070	30 1737221
316.321815	12866821
316.322103	7452933
316.322403	4715781
317.323534	6676114

m/z	I
317.324596	43533586
318.328065	4292896
332.316173	35190233
333.319616	5481958
337.235244	13807128
339.172220	23156272
340.175661	4953660
341,209053	8212041
343.188314	3440097
300.10/19/	430/093
375 250065	4007060
381 260831	5216239
381.261484	27883503
382.264912	4695032
388.543442	6748206
399.250156	3788932
399.250908	20048004
400.254341	4787340
413.266533	50391276
413.267364	4753644
414,270005	9674995
419.277189	23374102
420.280573	4467997
425.287793	4934974
435.344947	6253952
437.193617	241150348
438.196171	5622162
438,197130	28233702
439.200012	7188880
439.203080	3772838
453,166695	4624881
453.167740	48753137
454.171224	9863671
463.302260	4205104
463.303392	52079152
463.304545	4424240
464.306864	11350582
479.229123	29919893
480.232535	4465307
491.219794	8454883
495.266341	13560573
507.328247	5905229
507.329579	6324303
500 222002	19622216
208.222092	33360014
524 258815	5304253
540 426350	15117350
541.429794	4396076
548.467834	12119129
549.471167	4196447
551.355786	80866411
552.359282	20262002
554.551250	4253823
561.397896	6978729
567.281622	35179725
568.285059	6153427
568.457651	6397140
576.499157	4427010

m/z	1
595.382003	55930217
596,385557	13503854
605.490217	4603291
611.307862	13827511
619.439728	7925212
639.408428	26955314
640.411805	7394870
655.334222	6098547
677.481683	6424268
683.434661	11042532
685.432161	5588717
685,435659	162246381
686.439299	63581937
687.442968	8462069
701.410139	5143345
727.460807	5171115
735.523621	5703636
793.565374	4003127

YC-192 pure pdt; 2,5-dimethyl-diol with phenylpropionaldehyde to form tricyclic isochromene; cdcl3; 6/19/2014

	Mass Spectrum Li	st Report	181
Analysis Info			
Analysis Name	YC-192_pos_000001.d	Acquisition Date	7/22/2014 4:30:02 PM
Method	XMASS_Method	Operator	FTMS_USER
Sample Name:	YC-192_pos	Instrument	apex-Qe
	YC-192_pos: in 1:1 THF:MeOH w/ NaCl		•
Acquisition Param	eter		

Sample: YC-192

Exact Mass of = (C25H28O)Na+ : 367.203237u Observed Mass = 367.203563u Difference = < 1.0 ppm

I
5357294
3642895
15253408
16864160
16417696
255402912
9342880
3686304
6655405
42795949
3594170
28968059
4686983
3664521
3644195
4762403
35728675
340796707
14632227
8592675
5777699

m/z	ſ
316.322702	4106019
317.323474	6922033
317.323953	5382449
317.324550	60712241
318.328026	3639103
332,316131	51291646
333,319572	8011275
338.303257	4888652
341 190290	3960944
343 205947	6197897
349.183588	3848913
360.347524	6908748
366.278933	4665225
367.203563	5359506
372.347560	3822019
375.250926	5678045
381.182843	9642002
381.261505	7133202
388.543437	5983311
413.266601	12024070
419.277129	31877423
420.280526	5998901
425.287730	4919638
435.202883	5134743
435,344885	6010264
437.192136	4014500
437.193689	104180132
438.197173	21965227
441.297928	5350847
453.167779	7236109
461.245533	5279300
463.302185	4860498
463.303340	63482450
463.304529	4659794
464.306796	14891609
477.267460	3641016
479.229078	34867910
480.228729	4046542
480.232486	5386958
507.224058	4369320
507.328305	7248809
507.329534	87337897
508.333035	22096818
523.255331	40438831
524.254954	4945976
524.258755	6845496
540.426299	19070142
541.429717	5397702
548.467782	13470975
549.471158	4593927
551.355722	97299734
551.357265	8097046
552.359219	23996373
JJ4.JJ1108	3194030
565 271605	4240101
567 070002	2624224
201.219880	3024334
568 201223	447399866 5130705
568 284040	7001101
568 157600	2102212
	0100010

m/z	I
576.499103	5230030
595.381923	68546112
595.383774	5684800
596.385464	18005573
605.490522	5131890
611.307819	17055372
612.311232	3837584
639.408343	35106538
640.411761	9686764
655.334085	8625931
683.434585	16817964
684.437986	5498668
685.432023	4132653
685.435786	117157677
686.439381	46018349
687.442936	7001902
699.360403	4753202
727.460805	7231281

______183

YC-191 pure pdt; 2,5-dimethyl-diol with 4-nitro-benzaldehyde to form tricyclic isochromene; cdc13; 6/16/2014

	Mass Spectrum Li	st Report	187
Analysis Info			
Analysis Name Method	YC-191_pos_000001.d XMASS_Method	Acquisition Date Operator	7/22/2014 4:26:17 PM FTMS_USER
Sample Name:	YC-191_pos YC-191_pos: in 1:1 THF:MeOH w/ NaCl	Instrument	apex-Qe
Acquisition Param	eter		

Sample: YC-191

Exact Mass of = (C23H23NO3)Na+ : 384.157015u Observed Mass = 384.157369u Difference = < 1.0 ppm

m/z	1
220.086169	3404787
255.135761	3352589
288.287888	3661827
288.288576	9949187
288.289054	19055619
288.289800	204301315
288.290527	9964547
288.291045	4139011
289.292075	2912276
289.293299	13190164
304.284861	18339095
316.318762	3816935
316.320255	34055655
316.320573	24219111
316.321075	267232743
316.321889	11587047
316.322662	5017063
316.323271	3311079
317.323589	6779384
317.324587	39732728
318,328041	4658697

printed:

7/25/2014 2:30:53 PM

m/z	Ι
327.193364	9554587
332.316146	40740588
333.319597	7087867
337.235228	11065142
338.303248	6036294
352.282539	3710465
360.324012	12580955
360.347525	4742236
366.278935	5960855
372.347563	5711054
375.250955	3892966
381.261440	30271764
382.264882	5215516
388.543417	6337862
399.249049	4295045
399.250745	123808133
399.252230	4220293
400.254274	26171787
400.378881	3182987
408.232604	4080050
413.200388	18/2941/
414.270002	4113070
419.240020	2240007
419.277138	4523405
421 233002	3430801
425 287730	7303675
435.202903	4911649
435,344899	8245794
437.192055	3600937
437.193689	75655721
438.197169	16276013
441.297944	10531384
463.303352	43879060
464.306805	10021529
471.308491	14195387
472.311903	3772097
4/9.229044	35842216
480.228080	4343382
480.232481	3499030
493.200311 507.200311	4329290
507.224601	60418985
508.333039	15190961
523.255309	37497899
524,254949	4126772
524,258720	5945396
540.426252	22604995
541.429712	6319308
548.467764	12201229
549.471086	4188439
551.355729	66235688
551.357216	7486760
552.359207	17014066
334.551167	4035910
304.4020/0	3083683
J07.281320 568 381307	2872775
568 29/055	2012223 6160065
568 457547	7538123
576.499127	4044312

m/z	I
594.298421	7061186
595.381953	45854413
595.383640	5068493
596.385468	11638486
605.490320	5046059
611.307803	12840800
639.408328	20615240
640.411664	570785 5
655.334080	5084338
683.434482	10367277
684.437849	3467568
685.431654	5687602
685.435548	156676402
685.440720	4147506
686.439151	62124340
687.442746	9488694
699.360352	3257668
727.460826	4768008

Mass Spectrum List Report			
Analysis Info			
Analysis Name Method Sample Name:	YC-190_pos_000001.d XMASS_Method YC-190_pos YC-190_pos: in 1:1 THF:MeOH w/ NaCl	Acquisition Date Operator Instrument	7/22/2014 4:22:25 PM FTMS_USER apex-Qe
Acquisition Param	eter		

Sample: YC-190

Exact Mass of = (C24H26O)Na+ : 353.187587u Observed Mass = 353.187685u Difference = < 1.0 ppm

m/z	1
288.288549	17885062
288.289787	185852806
288.290462	7416710
288.290707	4576134
288.290950	3074950
289.292043	7597971
289.292593	3139987
289.293222	60924819
304.284827	31450196
305.157328	3447904
305.288227	441148 9
313.195376	2957513
316.313229	3079922
316.314064	2732530
316.319424	15136498
316,320632	52221170
316.321033	260220146
316.321565	21193970
316.321844	11433202
316.322126	7419122
316.322409	4987122

m/z	I
316.322705	3582194
316.322991	2773746
317.322959	5770495
317.323684	11474175
317,324519	74294527
318.328017	4436236
327.078386	3027836
332.315194	4252093
332.316135	38798781
333.319572	6752714
338.303241	3304966
353.187685	6690475
360.347517	7229170
366.278919	4837161
375.250924	6890358
388.543630	3157981
389.214960	3072482
413.266591	8501381
419.277140	27027627
420.280529	5533873
425.287733	3152593
433.241200	3437827
435.202884	4768015
435.344866	4478224
437.192117	3449116
437.193712	80177436
438.197180	17246499
453.167777	8262022
463.302244	4188623
403.303343	38730939
403.304319	4010311
404.300730	2088605
479 229087	28486222
480.228741	3373654
480.232495	4478551
507,224083	3396431
507.329551	68823888
508.333038	17783641
521.345369	2772952
523.255338	33303531
524.254972	4112373
524.258744	5866485
540.426230	8244369
541.429678	2806427
548.467741	7263453
551.355751	76442871
552.359222	19426560
554.551147	4143380
565.371619	2826610
567.281572	34295170
567.329817	4027778
568.281232	3910026
208.284989	0/49578
208.42/290	4029900
J/0.499090	51910057
272.201723	1526007
506 285440	4222662
500 552240	3755605
605.490535	3665535
~~~~~~~~	~~~~~~

m/z	1
611.307814	14282393
611.356121	3340953
612.311241	3029661
639.408372	24866542
640.411756	7263984
655.334093	7386886
683.434602	12222224
684.437972	4354832
685.430827	5162768
685.435615	228437776
685.442092	2897680
686.439174	96644880
686.442976	3997456
687.442860	15310607
699.360356	4595466
701.410110	3493641
727.460810	6602488
771.487033	3007239



YC-194 21-21 pure cis pdt; tricyclic isochromene from racemic diol and p-methyl-benzaldehyde; cdcl3; 6/22/2014





Mass Spectrum List Report			202
Analysis Info			
Analysis Name Method Sample Name:	YC-194_pos_000001.d XMASS_Method YC-194_pos YC-194_pos: in 1:1 THF:MeOH w/ NaCl	Acquisition Date Operator Instrument	7/22/2014 4:37:13 PM FTMS_USER apex-Qe
Acquisition Param	eter		

Sample: YC-194 Exact Mass of = (C21H20O)Na+ : 311.140636u Observed Mass = 311.140905u Difference = < 1.0 ppm



1146	*
174.370875	4812078
285.146348	10272630
288.288500	17621153
288.289093	12494753
288.289789	203809697
288.290469	8017825
288.290710	4951969
288.290954	3350689
289.291999	6681519
289.292552	4712367
289.293224	61432751
304.284847	27559042
305.288242	4050576
316.313204	3325741
316.320251	43570477
316.320537	48260397
316.321064	272770349
316.321841	12367149
316.322123	7843117
316.322405	5093677
316.322706	3723053

m/z	I
317.323403	9204027
317.324518	86451515
318.328030	4482889
325.120184	17384871
326.123545	3546549
332.315175	3412488
332.316142	42419720
333.319591	7385621
338.303258	4541525
343.130774	3281040
343.188286	10794641
357.203939	12881707
360.347532	7464778
366.278947	5308289
373.198892	3881916
375.250936	6535117
388.543460	3668527
389.214965	3424820
413.266603	14911685
414.269987	3380938
419.277149	28870885
420.280528	5621994
425.287761	4523268
433.241208	4035885
435.202907	5019959
435.344896	5273912
437.192127	3608897
437.192768	7043393
437.193714	89745729
438.197192	18999622
441.297945	11213142
453.167814	8018325
463,302203	3922382
463.303366	55503310
463.304537	4358606
464.306816	12005844
477.267463	3974694
479.229093	32016947
480.228732	4005434
480.232503	5281338
507.224089	3676935
507.328244	5188360
507.329568	69856008
507.330971	4942600
508.333061	17500944
521.293695	3263356
523.255339	40094605
524.254984	4/800/0
524.238703	0052342
540.420320	7252450
550 (28007	2422507
551 355790	3433397
557 250720	18503056
554 551101	10394930
567 791575	4473471
567 300810	3350847
568 281100	4772119
568 285016	7470359
568 457502	3975449
595.382009	45444599
· · · · · · · · · · · · · · · · · · ·	

m/z	I
596.385486	11996671
605.490485	4041284
611.307849	17018479
612.311211	3830390
639.408410	23007013
640.411795	6731563
655,334102	9066363
683.434639	11460595
684.438019	4212727
685.430762	4816890
685.432142	7002106
685.435642	214478842
686.439216	88256510
686.442963	3583998
687.442911	13889537
699.360381	5693476
701.410134	3796009
727.460856	5408852



YC-194 trans compd; racemic diol with p-methyl-benzaldehyde to form tricyclic isochromene; cdcl3; 6/26/2014





Crystallographic Data for:

4-(4-bromophenyl)-2,2,7,10-tetramethyl-1,4-dihydro-2H-benzo[f]isochromene (38d-3):



**38d-3** Chemical Formula: C₂₃H₂₃BrO Molecular Weight: 395.34


Identification code	P21onn			
Empirical formula	C23 H23 Br O			
Formula weight	395.32			
Temperature	100(2) K			
Wavelength	1.54178 Å			
Crystal system	Monoclinic			
Space group	P 21/n			
Unit cell dimensions	a = 17.0425(3) Å	α= 90°.		
	b = 6.45510(10) Å	β= 95.9170(6)°.		
	c = 17.1404(3) Å	γ = 90°.		
Volume	1875.59(5) Å ³			
Z	4			
Density (calculated)	1.400 Mg/m ³			
Absorption coefficient	3.026 mm ⁻¹			
F(000)	816			
Crystal size	0.555 x 0.248 x 0.189 mi	m ³		
Theta range for data collection	3.482 to 66.992°.			
Index ranges	-20<=h<=20, -7<=k<=	6, -20<=l<=19		
Reflections collected	20549			
Independent reflections	3309 [R(int) = 0.0304]			
Completeness to theta = 67.679°	97.5 %			
Refinement method	Full-matrix least-squares	on F ²		
Data / restraints / parameters	3309 / 0 / 230			
Goodness-of-fit on F ²	1.031			
Final R indices [I>2sigma(I)]	R1 = 0.0242, $wR2 = 0.0654$			
R indices (all data)	R1 = 0.0245, $wR2 = 0.0656$			
Extinction coefficient	n/a			
Largest diff. peak and hole	0.411 and -0.380 e.Å ⁻³			

#### Table 1. Crystal data and structure refinement for P21onn.res.

# Table 2. Atomic coordinates ( $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å²x 10³).

for P21onn.res. U(eq) is defined as one third of the trace of the orthogonalized  $U^{j}$  tensor.

	x	У	Z	U(eq)
Br(1)	323(1)	-321(1)	1174(1)	24(1)
O(1)	2838(1)	-208(2)	4459(1)	16(1)
C(1)	2504(1)	236(2)	5790(1)	15(1)
C(2)	3160(1)	-224(2)	5272(1)	16(1)
C(3)	2512(1)	1713(2)	4184(1)	14(1)
C(4)	2029(1)	2786(2)	4767(1)	13(1)
C(5)	1608(1)	4566(2)	4486(1)	16(1)
C(6)	1170(1)	5654(2)	4960(1)	16(1)
C(7)	1110(1)	5028(2)	5746(1)	14(1)
C(8)	637(1)	6244(3)	6212(1)	18(1)
C(9)	554(1)	5601(3)	6960(1)	21(1)
C(10)	930(1)	3788(3)	7255(1)	20(1)
C(11)	1408(1)	2581(3)	6838(1)	17(1)
C(12)	1523(1)	3204(2)	6046(1)	14(1)
C(13)	2007(1)	2119(2)	5530(1)	13(1)
C(14)	3446(1)	-2443(3)	5403(1)	22(1)
C(15)	3840(1)	1308(3)	5415(1)	22(1)
C(16)	2003(1)	1217(2)	3426(1)	12(1)
C(17)	2002(1)	2459(2)	2762(1)	16(1)
C(18)	1507(1)	2019(3)	2085(1)	17(1)
C(19)	1022(1)	299(3)	2080(1)	16(1)
C(20)	1024(1)	-995(3)	2727(1)	16(1)
C(21)	1516(1)	-517(2)	3397(1)	15(1)
C(22)	232(1)	8199(3)	5892(1)	23(1)
C(23)	1753(1)	679(3)	7264(1)	23(1)

Br(1)-C(19)	1.8991(17)
O(1)-C(3)	1.4198(18)
O(1)-C(2)	1.443(2)
C(1)-C(13)	1.522(2)
C(1)-C(2)	1.526(2)
C(1)-H(1A)	0.9900
C(1)-H(1B)	0.9900
C(2)-C(14)	1.522(2)
C(2)-C(15)	1.525(2)
C(3)-C(16)	1.520(2)
C(3)-C(4)	1.526(2)
C(3)-H(3)	1,0000
C(4)-C(13)	1.381(2)
C(4)-C(5)	1.412(2)
C(5)-C(6)	1.356(2)
C(5)-H(5)	0.9500
C(6)-C(7)	1.420(2)
C(6)-H(6)	0.9500
C(7)-C(8)	1.427(2)
C(7)-C(12)	1.439(2)
C(8)-C(9)	1.369(2)
C(8)-C(22)	1.514(2)
C(9)-C(10)	1.403(3)
C(9)-H(9)	0.9500
C(10)-C(11)	1.378(2)
C(10)-H(10)	0.9500
C(11)-C(12)	1.448(2)
C(11)-C(23)	1.516(2)
C(12)-C(13)	1.451(2)
C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
C(15)-H(15A)	0.9800

Table 3.	Bond lengths [Å] and angles [°] for P21onn.res.	

C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(16)-C(17)	1.391(2)
C(16)-C(21)	1.392(2)
C(17)-C(18)	1.392(2)
C(17)-H(17)	0.9500
C(18)-C(19)	1.384(2)
C(18)-H(18)	0.9500
C(19)-C(20)	1.388(2)
C(20)-C(21)	1.385(2)
C(20)-H(2 <b>0</b> )	0.9500
C(21)-H(21)	0.9500
C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800
C(23)-H(23C)	0.9800
C(3)-O(1)-C(2)	115.05(11)
C(13)-C(1)-C(2)	113.79(13)
C(13)-C(1)-H(1A)	108.8
C(2)-C(1)-H(1A)	108.8
C(13)-C(1)-H(1B)	108.8
C(2)-C(1)-H(1B)	108.8
H(1A)-C(1)-H(1B)	107.7
O(1)-C(2)-C(14)	103.48(13)
O(1)-C(2)-C(15)	110.94(14)
C(14)-C(2)-C(15)	111.05(14)
O(1)-C(2)-C(1)	109.46(13)
C(14)-C(2)-C(1)	109.88(14)
C(15)-C(2)-C(1)	111.73(13)
O(1)-C(3)-C(16)	105.64(12)
O(1)-C(3)-C(4)	113.46(12)
C(16)-C(3)-C(4)	110.89(12)
O(1)-C(3)-H(3)	108.9

C(16)-C(3)-H(3)	108.9
C(4)-C(3)-H(3)	108.9
C(13)-C(4)-C(5)	120.93(14)
C(13)-C(4)-C(3)	123.24(14)
C(5)-C(4)-C(3)	115.81(13)
C(6)-C(5)-C(4)	120. <b>6</b> 3(15)
C(6)-C(5)-H(5)	119.7
C(4)-C(5)-H(5)	119.7
C(5)-C(6)-C(7)	121.23(15)
C(5)-C(6)-H(6)	119.4
C(7)-C(6)-H(6)	119.4
C(6)-C(7)-C(8)	118.27(15)
C(6)-C(7)-C(12)	119.47(14)
C(8)-C(7)-C(12)	122.26(15)
C(9)-C(8)-C(7)	118.41(15)
C(9)-C(8)-C(22)	120.36(15)
C(7)-C(8)-C(22)	121.23(15)
C(8)-C(9)-C(10)	120.19(15)
C(8)-C(9)-H(9)	119.9
С(10)-С(9)-Н(9)	119.9
C(11)-C(10)-C(9)	123. <b>86(</b> 15)
C(11)-C(10)-H(10)	118.1
C(9)-C(10)-H(10)	118.1
C(10)-C(11)-C(12)	118.24(15)
C(10)-C(11)-C(23)	115.35(14)
C(12)-C(11)-C(23)	12 <b>6</b> .40(15)
C(7)-C(12)-C(11)	116.97(14)
C(7)-C(12)-C(13)	117.69(14)
C(11)-C(12)-C(13)	125.33(14)
C(4)-C(13)-C(12)	119.99(14)
C(4)-C(13)-C(1)	117.25(14)
C(12)-C(13)-C(1)	122.75(13)
С(2)-С(14)-Н(14А)	109.5
C(2)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(2)-C(14)-H(14C)	109.5

H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
C(2)-C(15)-H(15A)	109.5
C(2)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(2)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(17)-C(16)-C(21)	118.92(14)
C(17)-C(16)-C(3)	122.06(14)
C(21)-C(16)-C(3)	119.02(14)
C(16)-C(17)-C(18)	120.99(15)
C(16)-C(17)-H(17)	119.5
C(18)-C(17)-H(17)	119.5
C(19)-C(18)-C(17)	118.59(15)
C(19)-C(18)-H(18)	120.7
C(17)-C(18)-H(18)	120.7
C(18)-C(19)-C(20)	121.69(15)
C(18)-C(19)-Br(1)	119.84(12)
C(20)-C(19)-Br(1)	118.47(12)
C(21)-C(20)-C(19)	118.71(15)
C(21)-C(20)-H(20)	120.6
C(19)-C(20)-H(20)	120.6
C(20)-C(21)-C(16)	121.07(15)
C(20)-C(21)-H(21)	119.5
C(16)-C(21)-H(21)	119.5
C(8)-C(22)-H(22A)	109.5
C(8)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(8)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
C(11)-C(23)-H(23A)	109.5
C(11)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5
C(11)-C(23)-H(23C)	109.5

Table 4. Anisotropic displacement parameters ( $Å^2 x \ 10^3$ ) for P21onn.res. The anisotropic displacement factor exponent takes the form:  $-2\pi^2$ [  $h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k$ 

a* b* U¹² ].

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	17(1)	38(1)	16(1)	-1(1)	-6(1)	-4(1)
0(1)	20(1)	17(1)	12(1)	-1(1)	-4(1)	7(1)
C(1)	17(1)	14(1)	13(1)	1(1)	-2(1)	0(1)
C(2)	15(1)	19(1)	12(1)	0(1)	-5(1)	3(1)
C(3)	14(1)	14(1)	13(1)	1(1)	0(1)	1(1)
C(4)	12(1)	12(1)	14(1)	-2(1)	-1(1)	-2(1)
C(5)	21(1)	14(1)	13(1)	2(1)	2(1)	-1(1)
C(6)	17(1)	11(1)	19(1)	2(1)	1(1)	1(1)
C(7)	13(1)	13(1)	16(1)	-2(1)	0(1)	-4(1)
C(8)	14(1)	17(1)	23(1)	-3(1)	2(1)	-2(1)
C(9)	18(1)	26(1)	21(1)	-6(1)	6(1)	-1(1)
C(10)	22(1)	26(1)	13(1)	-2(1)	3(1)	-5(1)
C(11)	18(1)	18(1)	14(1)	-1(1)	-1(1)	-5(1)
C(12)	14(1)	13(1)	14(1)	-2(1)	-1(1)	-5(1)
C(13)	13(1)	12(1)	14(1)	-1(1)	-2(1)	-3(1)
C(14)	24(1)	22(1)	17(1)	-1(1)	-5(1)	9(1)
C(15)	16(1)	28(1)	23(1)	1(1)	-2(1)	-1(1)
C(16)	10(1)	15(1)	13(1)	-2(1)	2(1)	3(1)
C(17)	15(1)	16(1)	17(1)	1(1)	2(1)	-2(1)
C(18)	18(1)	20(1)	14(1)	5(1)	1(1)	2(1)
C(19)	10(1)	23(1)	13(1)	-2(1)	-1(1)	3(1)
C(20)	14(1)	17(1)	18(1)	-2(1)	3(1)	-2(1)
C(21)	16(1)	15(1)	14(1)	2(1)	3(1)	1(1)
C(22)	21(1)	20(1)	28(1)	-2(1)	5(1)	4(1)
C(23)	32(1)	25(1)	14(1)	4(1)	5(1)	2(1)

Table

# 5. Hydrogen coordinates ( x 10⁴) and isotropic displacement parameters (Å²x 10 3 )

#### for P21onn.res.

	x	У	Z	U(eq)
H(1A)	2155	-989	5792	18
H(1B)	2743	460	6335	18
H(3)	2950	2654	4064	16
H(5)	1633	5004	3960	19
H(6)	897	6858	4763	19
H(9)	241	6384	7281	25
H(10)	850	3367	7772	24
H(14A)	3628	-2644	595 <b>9</b>	32
H(14B)	3882	-2709	5086	32
H(14C)	3012	-3402	5248	32
H(15A)	4097	1129	5949	34
H(15B)	3638	2725	5351	34
H(15C)	4224	1054	5037	34
H(17)	2343	3624	2772	19
H(18)	1503	2880	1635	21
H(20)	696	-2186	2711	20
H(21)	1521	-1387	3845	18
H(22A)	626	9150	5715	35
H(22B)	-36	8865	6304	35
H(22C)	-155	7848	5449	35
H(23A)	1488	450	7738	35
H(23B)	2318	889	7410	35
H(23C)	1675	-531	6920	35

Table V. TOTSION angles [ ] TOT F210101116	Tal	ble	6.	Torsion	angles	[°]	for	P21onn	.re:
--------------------------------------------	-----	-----	----	---------	--------	-----	-----	--------	------

C(3)-O(1)-C(2)-C(14)	178.98(13)
C(3)-O(1)-C(2)-C(15)	-61.87(17)
C(3)-O(1)-C(2)-C(1)	61.89(17)
C(13)-C(1)-C(2)-O(1)	-48.91(17)
C(13)-C(1)-C(2)-C(14)	-161.91(13)
C(13)-C(1)-C(2)-C(15)	74.37(17)
C(2)-O(1)-C(3)-C(16)	-163.29(12)
C(2)-O(1)-C(3)-C(4)	-41.61(17)
O(1)-C(3)-C(4)-C(13)	9.2(2)
C(16)-C(3)-C(4)-C(13)	127.87(15)
O(1)-C(3)-C(4)-C(5)	-172.20(13)
C(16)-C(3)-C(4)-C(5)	-53.49(18)
C(13)-C(4)-C(5)-C(6)	-0.4(2)
C(3)-C(4)-C(5)-C(6)	-179.02(14)
C{4)-C(5)-C(6)-C(7)	-0.9(2)
C(5)-C(6)-C(7)-C(8)	-179.91(15)
C(5)-C(6)-C(7)-C(12)	0.0(2)
C(6)-C(7)-C(8)-C(9)	177.55(15)
C(12)-C(7)-C(8)-C(9)	-2.4(2)
C(6)-C(7)-C(8)-C(22)	-2.3(2)
C(12)-C(7)-C(8)-C(22)	177.76(15)
C(7)-C(8)-C(9)-C(10)	0.1(2)
C(22)-C(8)-C(9)-C(10)	179.99(16)
C(8)-C(9)-C(10)-C(11)	1.5(3)
C(9)-C(10)-C(11)-C(12)	-0.7(2)
C(9)-C(10)-C(11)-C(23)	-179.69(16)
C(6)-C(7)-C(12)-C(11)	-176.91(14)
C(8)-C(7)-C(12)-C(11)	3.0(2)
C(6)-C(7)-C(12)-C(13)	2.0(2)
C(8)-C(7)-C(12)-C(13)	-178.11(14)
C(10)-C(11)-C(12)-C(7)	-1.4(2)
C(23)-C(11)-C(12)-C(7)	177.39(15)
C(10)-C(11)-C(12)-C(13)	179.78(15)

C(23)-C(11)-C(12)-C(13)	-1.4(3)
C(5)-C(4)-C(13)-C(12)	2.4(2)
C(3)-C(4)-C(13)-C(12)	-179.02(13)
C(5)-C(4)-C(13)-C(1)	-177.68(14)
C(3)-C(4)-C(13)-C(1)	0.9(2)
C(7)-C(12)-C(13)-C(4)	-3.2(2)
C(11)-C(12)-C(13)-C(4)	175.62(14)
C(7)-C(12)-C(13)-C(1)	176.93(14)
C(11)-C(12)-C(13)-C(1)	-4.3(2)
C(2)-C(1)-C(13)-C(4)	19.2(2)
C(2)-C(1)-C(13)-C(12)	-160.89(14)
O(1)-C(3)-C(16)-C(17)	-137.29(14)
C(4)-C(3)-C(16)-C(17)	99.38(16)
O(1)-C(3)-C(16)-C(21)	43.57(17)
C(4)-C(3)-C(16)-C(21)	-79.75(17)
C(21)-C(16)-C(17)-C(18)	1.7(2)
C(3)-C(16)-C(17)-C(18)	-177.43(14)
C(16)-C(17)-C(18)-C(19)	-0.8(2)
C(17)-C(18)-C(19)-C(20)	-0.8(2)
C(17)-C(18)-C(19)-Br(1)	178.74(12)
C(18)-C(19)-C(20)-C(21)	1.4(2)
Br(1)-C(19)-C(20)-C(21)	-178.17(12)
C(19)-C(20)-C(21)-C(16)	-0.4(2)
C(17)-C(16)-C(21)-C(20)	-1.1(2)
C(3)-C(16)-C(21)-C(20)	178.04(14)

······				
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

### Table 7. Hydrogen bonds for P21onn.res [Å and °].

Crystallographic Data for:

(2S,4R)-2-methyl-4-(p-tolyl)-1,4-dihydro-2H-benzo[f]isochromene (42a)



42a Chemical Formula: C₂₁H₂₀O Molecular Weight: 288.39



 Table 8. Crystal data and structure refinement for Pbca.res.

Identification code	Pbca	Pbca		
Empirical formula	C21 H20 O			
Formula weight	288.37			
Temperature	296(2) K			
Wavelength	1.54178 Å			
Crystal system	Orthorhombic			
Space group	Pbca			
Unit cell dimensions	a = 18.1842(2) Å	α= 90°.		
	b = 8.95420(10) Å	β= 90°.		
	c = 20.2236(2) Å	$\gamma = 90^{\circ}$ .		
Volume	3292.91(6) Å ³			
Ζ	8			
Density (calculated)	1,163 Mg/m ³			
Absorption coefficient	0.536 mm ⁻¹			
F(000)	1232			
Crystal size	0.450 x 0.170 x 0.100 mm ³	l		
Theta range for data collection	4.864 to 64.984°.			
Index ranges	-21<=h<=21,-10<=k<=10,	-20<=1<=23		
Reflections collected	22603			
Independent reflections	2790 [R(int) = 0.0350]			
Completeness to theta = $67.679^{\circ}$	93.5 %			
Refinement method	Full-matrix least-squares or	n F ²		
Data / restraints / parameters	2790 / 0 / 201			
Goodness-of-fit on F ²	1.026	1.026		
Final R indices [I>2sigma(I)]	$R1 = 0.0406$ , $wR2 = 0.115^{\circ}$	R1 = 0.0406, $wR2 = 0.1157$		
R indices (all data)	$R_1 = 0.0488, wR_2 = 0.1240$	R1 = 0.0488, wR2 = 0.1246		
Extinction coefficient	0.00126(18)			
Largest diff. peak and hole	0.144 and -0.121 e.Å ⁻³			

	x	у	Z	U(eq)
O(1)	2067(1)	1532(1)	4210(1)	66(1)
C(1)	1914(1)	806(2)	5351(1)	66(1)
C(2)	1629(1)	1753(2)	4792(1)	<b>69(</b> 1)
C(3)	2796(1)	2102(2)	4297(1)	58(1)
C(4)	3155(1)	1435(1)	4906(1)	52(1)
C(5)	3929(1)	1470(2)	4961(1)	60(1)
C(6)	4277(1)	802(2)	5474(1)	66(1)
C(7)	3877(1)	52(2)	5967(1)	60(1)
C(8)	4231(1)	-713(2)	6488(1)	81(1)
C(9)	3840(1)	-1414(2)	6963(1)	100(1)
C(10)	3075(1)	-1396(2)	6944(1)	100(1)
C(11)	2710(1)	-682(2)	6446(1)	81(1)
C(12)	3099(1)	66(2)	5938(1)	58(1)
C(13)	2741(1)	787(1)	5394(1)	53(1)
C(14)	845(1)	1389(3)	4608(1)	104(1)
C(15)	3215(1)	1797(2)	3668(1)	58(1)
C(16)	3380(1)	361(2)	3480(1)	71(1)
C(17)	3766(1)	84(2)	2907(1)	82(1)
C(18)	4006(1)	1221(2)	2503(1)	77(1)
C(19)	3838(1)	2647(2)	2696(1)	92(1)
C(20)	3448(1)	2945(2)	3267(1)	79(1)
C(21)	4435(1)	913(3)	1878(1)	112(1)

Table 9. Atomic coordinates (x  $10^4$ ) and equivalent isotropic displacement parameters (Å²x  $10^3$ ) for Pbca.res. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(3)	1.4307(16)
O(1)-C(2)	1.4350(18)
C(1)-C(13)	1.5057(19)
C(1)-C(2)	1.505(2)
C(1)-H(1A)	0.9700
C(1)-H(1B)	0.9700
C(2)-C(14)	1.508(2)
C(2)-H(2)	0.9800
C(3)-C(15)	1.5091(19)
C(3)-C(4)	1.5149(19)
C(3)-H(3)	0.9800
C(4)-C(13)	1.3703(18)
C(4)-C(5)	1.4130(19)
C(5)-C(6)	1.354(2)
C(5)-H(5)	0.9300
C(6)-C(7)	1.406(2)
C(6)-H(6)	0.9300
C(7)-C(8)	1.413(2)
C(7)-C(12)	1.416(2)
C(8)-C(9)	1.349(3)
C(8)-H(8)	0.9300
C(9)-C(10)	1.391(3)
C(9)-H(9)	0.9300
C(10)-C(11)	1.365(2)
C(10)-H(10)	0.9300
C(11)-C(12)	1.416(2)
C(11)-H(11)	0.9300
C(12)-C(13)	1.4319(19)
C(14)-H(14A)	0.9600
C(14)-H(14B)	0.9600
C(14)-H(14C)	0.9600
C(15)-C(16)	1.374(2)
C(15)-C(20)	1.376(2)
C(16)-C(17)	1.378(2)

Table 10. Bond lengths [Å] and angles [°] for Pbca.res.

____

C(16)-H(16)	0.9300
C(17)-C(18)	1.377(2)
С(17)-Н(17)	0.9300
C(18)-C(19)	1.369(3)
C(18)-C(21)	1.512(2)
C(19)-C(20)	1.381(3)
C(19)-H(19)	0.9300
C(20)-H(20)	0.9300
C(21)-H(21A)	0.9600
C(21)-H(21B)	0.9600
С(21)-Н(21С)	0.9600
C(3)-O(1)-C(2)	111.40(11)
C(13)-C(1)-C(2)	113.20(12)
C(13)-C(1)-H(1A)	108.9
C(2)-C(1)-H(1A)	108.9
C(13)-C(1)-H(1B)	108.9
C(2)-C(1)-H(1B)	108.9
H(1A)-C(1)-H(İB)	107.8
O(1)-C(2)-C(1)	110.25(11)
O(1)-C(2)-C(14)	107.00(14)
C(1)-C(2)-C(14)	112.94(15)
O(1)-C(2)-H(2)	108.9
C(1)-C(2)-H(2)	108.9
C(14)-C(2)-H(2)	108.9
O(1)-C(3)-C(15)	107.42(11)
O(1)-C(3)-C(4)	111.01(11)
C(15)-C(3)-C(4)	113.37(11)
O(1)-C(3)-H(3)	108.3
C(15)-C(3)-H(3)	108.3
C(4)-C(3)-H(3)	108.3
C(13)-C(4)-C(5)	119.99(13)
C(13)-C(4)-C(3)	121.00(12)
C(5)-C(4)-C(3)	119.00(12)
C(6)-C(5)-C(4)	121.09(13)
C(6)-C(5)-H(5)	119.5

C(4)-C(5)-H(5)	119.5
C(5)-C(6)-C(7)	120.84(13)
C(5)-C(6)-H(6)	119.6
C(7)-C(6)-H(6)	119.6
C(6)-C(7)-C(8)	121.68(15)
C(6)-C(7)-C(12)	118.91(13)
C(8)-C(7)-C(12)	119.41(14)
C(9)-C(8)-C(7)	121.04(18)
C(9)-C(8)-H(8)	119.5
C(7)-C(8)-H(8)	119.5
C(8)-C(9)-C(10)	120.18(18)
C(8)-C(9)-H(9)	119.9
C(10)-C(9)-H(9)	119.9
C(11)-C(10)-C(9)	120.75(18)
C(11)-C(10)-H(10)	119.6
C(9)-C(10)-H(10)	119.6
C(10)-C(11)-C(12)	120.98(17)
C(10)-C(11)-H(11)	119.5
C(12)-C(11)-H(11)	119.5
C(11)-C(12)-C(7)	117.64(14)
C(11)-C(12)-C(13)	123.00(14)
C(7)-C(12)-C(13)	119.34(12)
C(4)-C(13)-C(12)	119.66(12)
C(4)-C(13)-C(1)	120.15(13)
C(12)-C(13)-C(1)	120,18(12)
C(2)-C(14)-H(14A)	109.5
C(2)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(2)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
C(16)-C(15)-C(20)	118.01(14)
C(16)-C(15)-C(3)	120.83(13)
C(20)-C(15)-C(3)	121.15(13)
C(15)-C(16)-C(17)	120.82(15)
C(15)-C(16)-H(16)	119.6

C(17)-C(16)-H(16)	119.6
C(16)-C(17)-C(18)	121.80(16)
С(16)-С(17)-Н(17)	119.1
С(18)-С(17)-Н(17)	119.1
C(19)-C(18)-C(17)	116.76(16)
C(19)-C(18)-C(21)	121.61(19)
C(17)-C(18)-C(21)	121.63(19)
C(18)-C(19)-C(20)	122.21(17)
С(18)-С(19)-Н(19)	118.9
C(20)-C(19)-H(19)	118.9
C(15)-C(20)-C(19)	120.40(16)
C(15)-C(20)-H(20)	119.8
C(19)-C(20)-H(20)	119.8
C(18)-C(21)-H(21A)	109.5
C(18)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
С(18)-С(21)-Н(21С)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5

	$\Omega_{11}$	U ²²	U ³³	U ²³	U13	U ¹²
O(1)	55(1)	68(1)	74(1)	-9(1)	-8(1)	7(1)
C(1)	52(1)	65(1)	80(1)	-6(1)	11(1)	4(1)
C(2)	54(1)	66(1)	87(1)	-13(1)	1(1)	15(1)
C(3)	62(1)	46(1)	65(1)	-4(1)	-5(1)	1(1)
C(4)	52(1)	46(1)	57(1)	-9(1)	2(1)	-1(1)
C(5)	53(1)	70(1)	59(1)	-5(1)	3(1)	-9(1)
C(6)	49(1)	80(1)	68(1)	-12(1)	-2(1)	-3(1)
C(7)	64(1)	56(1)	61(1)	-10(1)	-7(1)	3(1)
C(8)	85(1)	74(1)	85(1)	-1(1)	-24(1)	3(1)
C(9)	125(2)	82(1)	93(1)	22(1)	-30(1)	-9(1)
C(10)	125(2)	90(1)	84(1)	28(1)	-1(1)	-16(1)
C(11)	83(1)	81(1)	78(1)	11(1)	11(1)	-6(1)
C(12)	64(1)	52(1)	59(1)	-5(1)	5(1)	2(1)
C(13)	50(1)	48(1)	62(1)	-8(1)	6(1)	3(1)
C(14)	54(1)	128(2)	130(2)	-12(1)	-7(1)	20(1)
C(15)	64(1)	53(1)	56(1)	0(1)	-6(1)	-4(1)
C(16)	86(1)	56(1)	69(1)	-4(1)	1 <b>3(1)</b>	-11(1)
C(17)	92(1)	75(1)	78(1)	-20(1)	11(1)	-8(1)
C(18)	68(1)	107(1)	57(1)	-1(1)	-4(1)	-9(1)
C(19)	104(1)	94(1)	77(1)	27(1)	10(1)	-11(1)
C(20)	100(1)	61(1)	77(1)	11(1)	1(1)	-2(1)
C(21)	91(1)	176(2)	70(1)	-9(1)	12(1)	-10(1)

**Table 11.** Anisotropic displacement parameters (Å²x 10³) for Pbca.res. The anisotropic displacement factor exponent takes the form:  $-2\pi^{2}$ [ h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²].

	х	У	Z	U(eq)
H(1A)	1716	1179	5764	79
H(1B)	1739	-209	5293	79
H(2)	1657	2806	4922	82
H(3)	2764	3186	4358	69
H(5)	4205	1960	4640	73
H(6)	4787	839	5500	79
H(8)	<b>4</b> 742	-734	6505	97
H(9)	4082	-1910	7303	120
H(10)	2810	-1876	7275	120
H(11)	2199	-688	6440	97
H(14A)	692	2022	4251	156
H(14B)	532	1549	4983	156
H(14C)	814	363	4472	156
H(16)	3231	-434	3744	85
H(17)	3866	-899	2789	98
H(19)	3993	3441	2435	110
H(20)	3342	3928	3381	95
H(21A)	4428	-139	1786	168
H(21B)	4934	1237	1935	168
H(21C)	4216	1444	1516	168

Table 12. Hydrogen coordinates (  $x \ 10^4$ ) and isotropic displacement parameters (Å²x 10³) for Pbca.res.

Table 13. Torsion angles [°] for Pbca.res.

C(3)-O(1)-C(2)-C(1)	-67.27(15)
C(3)-O(1)-C(2)-C(14)	169.55(13)
C(13)-C(1)-C(2)-O(1)	41.55(17)
C(13)-C(1)-C(2)-C(14)	161.19(14)
C(2)-O(1)-C(3)-C(15)	179.10(11)
C(2)-O(1)-C(3)-C(4)	54.64(14)
O(1)-C(3)-C(4)-C(13)	-19.18(17)
C(15)-C(3)-C(4)-C(13)	-140.20(12)
O(1)-C(3)-C(4)-C(5)	159.93(11)
C(15)-C(3)-C(4)-C(5)	38.91(17)
C(13)-C(4)-C(5)-C(6)	3.5(2)
C(3)-C(4)-C(5)-C(6)	-175.60(12)
C(4)-C(5)-C(6)-C(7)	0.0(2)
C(5)-C(6)-C(7)-C(8)	176.87(14)
C(5)-C(6)-C(7)-C(12)	-3.0(2)
C(6)-C(7)-C(8)-C(9)	179.25(16)
C(12)-C(7)-C(8)-C(9)	-0.9(2)
C(7)-C(8)-C(9)-C(10)	0.2(3)
C(8)-C(9)-C(10)-C(11)	0.5(3)
C(9)-C(10)-C(11)-C(12)	-0.4(3)
C(10)-C(11)-C(12)-C(7)	-0.2(2)
C(10)-C(11)-C(12)-C(13)	177.86(16)
C(6)-C(7)-C(12)-C(11)	-179.24(14)
C(8)-C(7)-C(12)-C(11)	0.9(2)
C(6)-C(7)-C(12)-C(13)	2,59(19)
C(8)-C(7)-C(12)-C(13)	-177.30(13)
C(5)-C(4)-C(13)-C(12)	-3.86(18)
C(3)-C(4)-C(13)-C(12)	175.24(11)
C(5)-C(4)-C(13)-C(1)	177.40(12)
C(3)-C(4)-C(13)-C(1)	-3.50(18)
C(11)-C(12)-C(13)-C(4)	-177.23(13)
C(7)-C(12)-C(13)-C(4)	0.84(19)
C(11)-C(12)-C(13)-C(1)	1.5(2)
C(7)-C(12)-C(13)-C(1)	179.58(12)

C(2)-C(1)-C(13)-C(4)	-7.74(19)
C(2)-C(1)-C(13)-C(12)	173.53(12)
O(1)-C(3)-C(15)-C(16)	-67.16(17)
C(4)-C(3)-C(15)-C(16)	55.86(18)
O(1)-C(3)-C(15)-C(20)	113.39(15)
C(4)-C(3)-C(15)-C(20)	-123.59(15)
C(20)-C(15)-C(16)-C(17)	-0.3(2)
C(3)-C(15)-C(16)-C(17)	-179.74(15)
C(15)-C(16)-C(17)-C(18)	0.6(3)
C(16)-C(17)-C(18)-C(19)	-0.5(3)
C(16)-C(17)-C(18)-C(21)	179.31(17)
C(17)-C(18)-C(19)-C(20)	0.0(3)
C(21)-C(18)-C(19)-C(20)	-179.81(17)
C(16)-C(15)-C(20)-C(19)	-0.2(3)
C(3)-C(15)-C(20)-C(19)	179.24(15)
C(18)-C(19)-C(20)-C(15)	0.4(3)

Table 14. Hydrogen bonds for Pbca.res [Å and °].

----

D-HA	d(D-H)	d(HA)	<b>d</b> (DA)	<(DHA)