26 research outputs found

    Progress towards quantum simulating the classical O(2) model

    Full text link
    We connect explicitly the classical O(2)O(2) model in 1+1 dimensions, a model sharing important features with U(1)U(1) lattice gauge theory, to physical models potentially implementable on optical lattices and evolving at physical time. Using the tensor renormalization group formulation, we take the time continuum limit and check that finite dimensional projections used in recent proposals for quantum simulators provide controllable approximations of the original model. We propose two-species Bose-Hubbard models corresponding to these finite dimensional projections at strong coupling and discuss their possible implementations on optical lattices using a 87^{87}Rb and 41^{41}K Bose-Bose mixture.Comment: 7 pages, 6 figures, uses revtex, new material and one author added, as to appear in Phys. Rev.

    Erratum to: Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5)

    Get PDF

    Innovative purification method to extract magnetic carbon nanotubes from arc-discharged single-walled carbon nanotubes

    No full text
    The discovery of carbon nanotubes has opened the door to numerous cutting-edge nanoscaleresearch fields including microelectronic devices, and biomedical application. Although pure nanotubes suffice for most purposes, highly pure magnetic carbon nanotubes are more suitable for specialized applications such as gene delivery. The conventional purification methods of carbon nanotubes are too harsh for the nanotubes to retain any magnetic characteristics, hence to enable the nanotubes be sensitive to magnetic field. It requiresthe reloading of metallic particles inside or on the surface of each tube. Instead, this paper proposes an innovative purification method to extract magnetic carbon nanotubes from arc-discharged single-walled carbon nanotube material. The procedure is easy to execute and time-saving. TEM and AFM images are used to monitor the purification process and prove that the carbon nanotube retain magnetic characteristics after the purification process. \ua9 2011 IEEE.Peer reviewed: YesNRC publication: Ye

    Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model.

    No full text
    Atmospheric aerosols are a significant public health hazard and have substantial impacts on the climate. Secondary organic aerosols (SOAs) have been shown to phase separate into a highly viscous organic outer layer surrounding an aqueous core. This phase separation can decrease the partitioning of semi-volatile and low-volatile species to the organic phase and alter the extent of acid-catalyzed reactions in the aqueous core. A new algorithm that can determine SOA phase separation based on their glass transition temperature (T g), oxygen to carbon (O : C) ratio and organic mass to sulfate ratio, and meteorological conditions was implemented into the Community Multiscale Air Quality Modeling (CMAQ) system version 5.2.1 and was used to simulate the conditions in the continental United States for the summer of 2013. SOA formed at the ground/surface level was predicted to be phase separated with core-shell morphology, i.e., aqueous inorganic core surrounded by organic coating 65.4 % of the time during the 2013 Southern Oxidant and Aerosol Study (SOAS) on average in the isoprene-rich southeastern United States. Our estimate is in proximity to the previously reported ~ 70 % in literature. The phase states of organic coatings switched between semi-solid and liquid states, depending on the environmental conditions. The semi-solid shell occurring with lower aerosol liquid water content (western United States and at higher altitudes) has a viscosity that was predicted to be 102-1012 Pa s, which resulted in organic mass being decreased due to diffusion limitation. Organic aerosol was primarily liquid where aerosol liquid water was dominant (eastern United States and at the surface), with a viscosity < 102 Pa s. Phase separation while in a liquid phase state, i.e., liquid-liquid phase separation (LLPS), also reduces reactive uptake rates relative to homogeneous internally mixed liquid morphology but was lower than aerosols with a thick viscous organic shell. The sensitivity cases performed with different phase-separation parameterization and dissolution rate of isoprene epoxydiol (IEPOX) into the particle phase in CMAQ can have varying impact on fine particulate matter (PM2.5) organic mass, in terms of bias and error compared to field data collected during the 2013 SOAS. This highlights the need to better constrain the parameters that govern phase state and morphology of SOA, as well as expand mechanistic representation of multiphase chemistry for non-IEPOX SOA formation in models aided by novel experimental insights
    corecore