3,034 research outputs found

    STRATEGIC ORIENTATION OF KNOWLEDGE MANAGEMENT AND INFORMATION TECHNOLOGY AND THEIR EFFECTS ON PERFORMANCE

    Get PDF
    Recently, a great number of theoretical frameworks have been proposed to develop the linkages between knowledge management (KM) and organizational strategy. While there has been much theorizing and case study in the area, validated research models integrating KM strategy and information technology (IT) strategy for empirical testing of these theories have been scarce. It is though that the rapid progress of IT has been provided a good solution to support KM practices. Choosing the proper ITs to fit with different KM strategies is critical for organizations. Effective KM activities require employing KM strategies, as well as IT, appropriately. That is, as long as the KM strategy has been determined within an organization, the IT strategy must be followed. In this present research, we try to develop and examine a research model for explaining the relationships between KM strategy, IT strategy, and their effects on performance. Empirical data for hypotheses testing are collected from top-ranked companies in Taiwan; yielding 161 valid samples. The findings showed that KM strategy has a positive direct effect upon IT strategy; KM strategy and IT strategy have significant positive effects upon KM performance and IT performance respectively, and then collectively, have impact upon business performance. Finally, from the empirical data analysis, meaningful findings and conclusions are derived, and suggestions for future research are proposed and discussed

    An evolutionary algorithm with double-level archives for multiobjective optimization

    Get PDF
    Existing multiobjective evolutionary algorithms (MOEAs) tackle a multiobjective problem either as a whole or as several decomposed single-objective sub-problems. Though the problem decomposition approach generally converges faster through optimizing all the sub-problems simultaneously, there are two issues not fully addressed, i.e., distribution of solutions often depends on a priori problem decomposition, and the lack of population diversity among sub-problems. In this paper, a MOEA with double-level archives is developed. The algorithm takes advantages of both the multiobjective-problemlevel and the sub-problem-level approaches by introducing two types of archives, i.e., the global archive and the sub-archive. In each generation, self-reproduction with the global archive and cross-reproduction between the global archive and sub-archives both breed new individuals. The global archive and sub-archives communicate through cross-reproduction, and are updated using the reproduced individuals. Such a framework thus retains fast convergence, and at the same time handles solution distribution along Pareto front (PF) with scalability. To test the performance of the proposed algorithm, experiments are conducted on both the widely used benchmarks and a set of truly disconnected problems. The results verify that, compared with state-of-the-art MOEAs, the proposed algorithm offers competitive advantages in distance to the PF, solution coverage, and search speed

    Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks

    Get PDF
    This paper proposes a novel bi-velocity discrete particle swarm optimization (BVDPSO) approach and extends its application to the NP-complete multicast routing problem (MRP). The main contribution is the extension of PSO from continuous domain to the binary or discrete domain. Firstly, a novel bi-velocity strategy is developed to represent possibilities of each dimension being 1 and 0. This strategy is suitable to describe the binary characteristic of the MRP where 1 stands for a node being selected to construct the multicast tree while 0 stands for being otherwise. Secondly, BVDPSO updates the velocity and position according to the learning mechanism of the original PSO in continuous domain. This maintains the fast convergence speed and global search ability of the original PSO. Experiments are comprehensively conducted on all of the 58 instances with small, medium, and large scales in the OR-library (Operation Research Library). The results confirm that BVDPSO can obtain optimal or near-optimal solutions rapidly as it only needs to generate a few multicast trees. BVDPSO outperforms not only several state-of-the-art and recent heuristic algorithms for the MRP problems, but also algorithms based on GA, ACO, and PSO

    Discrete optimal actuator-fault-tolerant control for vehicle active suspension

    Get PDF
    This paper studies the discrete actuator-fault-tolerant control problem for a vehicle active suspension system under persistent road disturbances. The discrete model of vehicle active suspension with actuator faults is formulated firstly, in which the actuator faults are described as the output of an exogenous system with unknown initial values. By designed a fault diagnoser, the optimal actuator-fault-tolerant controller is derived from the discrete Riccati equation and Stein equations, respectively. Simulation results illustrate that the ride comfort, road holding ability, and suspension deflection can be reduced significantly and the reliability of the vehicle active suspension can be improved

    Differential evolution with an evolution path: a DEEP evolutionary algorithm

    Get PDF
    Utilizing cumulative correlation information already existing in an evolutionary process, this paper proposes a predictive approach to the reproduction mechanism of new individuals for differential evolution (DE) algorithms. DE uses a distributed model (DM) to generate new individuals, which is relatively explorative, whilst evolution strategy (ES) uses a centralized model (CM) to generate offspring, which through adaptation retains a convergence momentum. This paper adopts a key feature in the CM of a covariance matrix adaptation ES, the cumulatively learned evolution path (EP), to formulate a new evolutionary algorithm (EA) framework, termed DEEP, standing for DE with an EP. Without mechanistically combining two CM and DM based algorithms together, the DEEP framework offers advantages of both a DM and a CM and hence substantially enhances performance. Under this architecture, a self-adaptation mechanism can be built inherently in a DEEP algorithm, easing the task of predetermining algorithm control parameters. Two DEEP variants are developed and illustrated in the paper. Experiments on the CEC'13 test suites and two practical problems demonstrate that the DEEP algorithms offer promising results, compared with the original DEs and other relevant state-of-the-art EAs
    • …
    corecore