64 research outputs found
Complete Genome and Transcriptomes of Streptococcus parasanguinis FW213: Phylogenic Relations and Potential Virulence Mechanisms
Streptococcus parasanguinis, a primary colonizer of the tooth surface, is also an opportunistic pathogen for subacute endocarditis. The complete genome of strain FW213 was determined using the traditional shotgun sequencing approach and further refined by the transcriptomes of cells in early exponential and early stationary growth phases in this study. The transcriptomes also discovered 10 transcripts encoding known hypothetical proteins, one pseudogene, five transcripts matched to the Rfam and additional 87 putative small RNAs within the intergenic regions defined by the GLIMMER analysis. The genome contains five acquired genomic islands (GIs) encoding proteins which potentially contribute to the overall pathogenic capacity and fitness of this microbe. The differential expression of the GIs and various open reading frames outside the GIs at the two growth phases suggested that FW213 possess a range of mechanisms to avoid host immune clearance, to colonize host tissues, to survive within oral biofilms and to overcome various environmental insults. Furthermore, the comparative genome analysis of five S. parasanguinis strains indicates that albeit S. parasanguinis strains are highly conserved, variations in the genome content exist. These variations may reflect differences in pathogenic potential between the strains
Is the whole greater than the sum of its parts? De novo assembly strategies for bacterial genomes based on paired-end sequencing
Number of misassemblies for different assembly strategies. Number of misassemblies for the de novo assembly results for E. coli DH1 and S. Parasanguinis FW213 are shown together with their standard errors of the mean. Group A [PE] and Group A [SE] represent all reads assembled as paired-end reads and single end reads, respectively. Group A [PEΓ’ΒΒ+Γ’ΒΒSE] represents all the non-overlapped paired-end reads assembled together with merged reads. Group M [PE] and Group M [SE] represent Group M reads assembled as paired-end reads and single end reads, respectively. The numbers of misassemblies fluctuate a lot when depths of read number are low and gradually decreases until they reach a steady number. The paired-end reads (Group A [PE] and Group M [PE]) in S. Parasanguinis FW213 gave the lowest number of misassemblies when depths of read number are high. (TIFF 669ΓΒ kb
The GlnR Regulon in Streptococcus mutans Is Differentially Regulated by GlnR and PmrA
GlnR-mediated repression of the GlnR regulon at acidic pH is required for optimal acid tolerance in Streptococcus mutans, the etiologic agent for dental caries. Unlike most streptococci, the GlnR regulon is also regulated by newly identified PmrA (SMUGS5_RS05810) at the transcriptional level in S. mutans GS5. Results from gel mobility shift assays confirmed that both GlnR and PmrA recognized the putative GlnR box in the promoter regions of the GlnR regulon genes. By using a chemostat culture system, we found that PmrA activated the expression of the GlnR regulon at pH 7, and that this activation was enhanced by excess glucose. Deletion of pmrA (strain Delta PmrA) reduced the survival rate of S. mutans GS5 at pH 3 moderately, whereas the GlnR mutant (strain Delta GlnR) exhibited an acid-sensitive phenotype in the acid killing experiments. Elevated biofilm formation in both Delta GlnR and Delta PmrA mutant strains is likely a result of indirect regulation of the GlnR regulon since GlnR and PmrA regulate the regulon differently. Taken together, it is suggested that activation of the GlnR regulon by PmrA at pH 7 ensures adequate biosynthesis of amino acid precursor, whereas repression by GlnR at acidic pH allows greater ATP generation for acid tolerance. The tight regulation of the GlnR regulon in response to pH provides an advantage for S. mutans to better survive in its primary niche, the oral cavity
Characterization of Streptococcus mutans Strains Deficient in EIIAB(Man) of the Sugar Phosphotransferase System
The phosphoenolpyruvate:sugar phosphotransferase system (PTS) is the major sugar uptake system in oral streptococci. The role of EIIAB(Man) (encoded by manL) in gene regulation and sugar transport was investigated in Streptococcus mutans UA159. The manL knockout strain, JAM1, grew more slowly than the wild-type strain in glucose but grew faster in mannose and did not display diauxic growth, indicating that EIIAB(Man) is involved in sugar uptake and in carbohydrate catabolite repression. PTS assays of JAM1, and of strains lacking the inducible (fruI) and constitutive (fruCD) EII fructose, revealed that S. mutans EIIAB(Man) transported mannose and glucose and provided evidence that there was also a mannose-inducible or glucose-repressible mannose PTS. Additionally, there appears to be a fructose PTS that is different than FruI and FruCD. To determine whether EIIAB(Man) controlled expression of the known virulence genes, glucosyltransferases (gtfBC) and fructosyltransferase (ftf) promoter fusions of these genes were established in the wild-type and EIIAB(Man)-deficient strains. In the manL mutant, the level of chloramphenicol acetyltransferase activity expressed from the gtfBC promoter was up to threefold lower than that seen with the wild-type strain at pH 6 and 7, indicating that EIIAB(Man) is required for optimal expression of gtfBC. No significant differences were observed between the mutant and the wild-type background in ftf regulation, with the exception that under glucose-limiting conditions at pH 7, the mutant exhibited a 2.1-fold increase in ftf expression. Two-dimensional gel analysis of batch-grown cells of the EIIAB(Man)-deficient strain indicated that the expression of at least 38 proteins was altered compared to that seen with the wild-type strain, revealing that EIIAB(Man) has a pleiotropic effect on gene expression
Analysis of an Agmatine Deiminase Gene Cluster in Streptococcus mutans UA159
An operon encoding enzymes of the agmatine deiminase system (AgDS) has been identified in the cariogenic bacterium Streptococcus mutans UA159. The AgDS is regulated by agmatine induction and carbohydrate catabolite repression. Ammonia is produced from agmatine at low pH, suggesting that the AgDS could augment acid tolerance
- β¦