9,509 research outputs found

    Warped Brane worlds in Critical Gravity

    Full text link
    We investigate the brane models in arbitrary dimensional critical gravity presented in [Phys. Rev. Lett. 106, 181302 (2011)]. For the model of the thin branes with codimension one, the Gibbons-Hawking surface term and the junction conditions are derived, with which the analytical solutions for the flat, AdS, and dS branes are obtained at the critical point of the critical gravity. It is found that all these branes are embedded in an AdSn_{n} spacetime, but, in general, the effective cosmological constant Λ\Lambda of the AdSn_{n} spacetime is not equal to the naked one Λ0\Lambda_0 in the critical gravity, which can be positive, zero, and negative. Another interesting result is that the brane tension can also be positive, zero, or negative, depending on the symmetry of the thin brane and the values of the parameters of the theory, which is very different from the case in general relativity. It is shown that the mass hierarchy problem can be solved in the braneworld model in the higher-derivative critical gravity. We also study the thick brane model and find analytical and numerical solutions of the flat, AdS, and dS branes. It is find that some branes will have inner structure when some parameters of the theory are larger than their critical values, which may result in resonant KK modes for some bulk matter fields. The flat branes with positive energy density and AdS branes with negative energy density are embedded in an nn-dimensional AdS spacetime, while the dS branes with positive energy density are embedded in an nn-dimensional Minkowski one.Comment: 14 pages, 7 figures, updated version, accepted by EPJ

    Tropical cyclones facilitate recovery of forest leaf area from dry spells in East Asia

    Get PDF
    Forests disturbance by tropical cyclones is mostly documented by field studies of exceptionally strong cyclones and satellite-based approaches attributing decreases in leaf area. By starting their analysis from the observed damage, these studies are biased and may, therefore, limit our understanding of the impact of cyclones in general. This study overcomes such biases by jointly analyzing the cyclone tracks, climate reanalysis, and changes in satellite-based leaf area following the passage of 140 ± 41 cyclones. Sixty days following their passage, 18 ± 8 % of the cyclones resulted in a decrease and 48 ± 18 % showed no change in leaf area compared to nearby forest outside the storm track. For a surprising 34 ± 7 % of the cyclones, an increase in leaf area was observed. Cyclones resulting in higher leaf area in their affected compared to their reference area coincided with an atmospheric pressure dipole steering the cyclone towards a region experiencing a dry spell caused by the same dipole. When the dipole was present, the destructive power of cyclones was offset by their abundant precipitation enabling forest canopies in the affected area to recover faster from the dry spell than canopies in the reference area. This study documents previously undocumented widespread antagonist interactions on forest leaf area between tropical cyclones and droughts.</p

    Construction of a Fish-like Robot Based on High Performance Graphene/PVDF Bimorph Actuation Materials.

    Get PDF
    Smart actuators have many potential applications in various areas, so the development of novel actuation materials, with facile fabricating methods and excellent performances, are still urgent needs. In this work, a novel electromechanical bimorph actuator constituted by a graphene layer and a PVDF layer, is fabricated through a simple yet versatile solution approach. The bimorph actuator can deflect toward the graphene side under electrical stimulus, due to the differences in coefficient of thermal expansion between the two layers and the converse piezoelectric effect and electrostrictive property of the PVDF layer. Under low voltage stimulus, the actuator (length: 20 mm, width: 3 mm) can generate large actuation motion with a maximum deflection of about 14.0 mm within 0.262 s and produce high actuation stress (more than 312.7 MPa/g). The bimorph actuator also can display reversible swing behavior with long cycle life under high frequencies. on this basis, a fish-like robot that can swim at the speed of 5.02 mm/s is designed and demonstrated. The designed graphene-PVDF bimorph actuator exhibits the overall novel performance compared with many other electromechanical avtuators, and may contribute to the practical actuation applications of graphene-based materials at a macro scale

    Proton mass decomposition

    Full text link
    We report the results on the proton mass decomposition and also on the related quark and glue momentum fractions. The results are based on overlap valence fermions on four ensembles of Nf=2+1N_f = 2+1 DWF configurations with three lattice spacings and volumes, and several pion masses including the physical pion mass. With 1-loop perturbative calculation and proper normalization of the glue operator, we find that the u,d,u, d, and ss quark masses contribute 9(2)\% to the proton mass. The quark energy and glue field energy contribute 31(5)\% and 37(5)\% respectively in the MS‾\overline{MS} scheme at μ=2\mu = 2 GeV. The trace anomaly gives the remaining 23(1)\% contribution. The u,d,su,d,s and glue momentum fractions in the MS‾\overline{MS} scheme are consistent with the global analysis at μ=2\mu = 2 GeV.Comment: 6 pages. Proceedings of the 35th International Symposium on Lattice Field Theory (Lattice2017), Granada, Spai
    • …
    corecore