5,008 research outputs found

    Radio Frequency Interference Mitigation

    Full text link
    Radio astronomy observational facilities are under constant upgradation and development to achieve better capabilities including increasing the time and frequency resolutions of the recorded data, and increasing the receiving and recording bandwidth. As only a limited spectrum resource has been allocated to radio astronomy by the International Telecommunication Union, this results in the radio observational instrumentation being inevitably exposed to undesirable radio frequency interference (RFI) signals which originate mainly from terrestrial human activity and are becoming stronger with time. RFIs degrade the quality of astronomical data and even lead to data loss. The impact of RFIs on scientific outcome is becoming progressively difficult to manage. In this article, we motivate the requirement for RFI mitigation, and review the RFI characteristics, mitigation techniques and strategies. Mitigation strategies adopted at some representative observatories, telescopes and arrays are also introduced. We also discuss and present advantages and shortcomings of the four classes of RFI mitigation strategies, applicable at the connected causal stages: preventive, pre-detection, pre-correlation and post-correlation. The proper identification and flagging of RFI is key to the reduction of data loss and improvement in data quality, and is also the ultimate goal of developing RFI mitigation techniques. This can be achieved through a strategy involving a combination of the discussed techniques in stages. Recent advances in high speed digital signal processing and high performance computing allow for performing RFI excision of large data volumes generated from large telescopes or arrays in both real time and offline modes, aiding the proposed strategy.Comment: 26 pages, 10 figures, Chinese version accepted for publication in Acta Astronomica Sinica; English version to appear in Chinese Astronomy and Astrophysic

    Stability of braneworlds with non-minimally coupled multi-scalar fields

    Get PDF
    Linear stability of braneworld models constructed with multi-scalar fields is very different from that of single-scalar field models. It is well known that both the tensor and scalar perturbation equations of the later can always be written as a supersymmetric Schr\"{o}dinger equation, so it can be shown that the perturbations are stable at linear level. However, in general it is not true for multi-scalar field models and especially there is no effective method to deal with the stability problem of the scalar perturbations for braneworld models constructed with non-minimally coupled multi-scalar fields. In this paper we present a method to investigate the stability of such braneworld models. It is easy to find that the tensor perturbations are stable. For the stability problem of the scalar perturbations, we present a systematic covariant approach. The covariant quadratic order action and the corresponding first-order perturbed equations are derived. By introducing the orthonormal bases in field space and making the Kaluza-Klein decomposition, we show that the Kaluza-Klein modes of the scalar perturbations satisfy a set of coupled Schr\"{o}dinger-like equations, with which the stability of the scalar perturbations and localization of the scalar zero modes can be analyzed according to nodal theorem. The result depends on the explicit models. For superpotential derived barane models, the scalar perturbations are stable, but there exist normalizable scalar zero modes, which will result in unaccepted fifth force on the brane. We also use this method to analyze the f(R)f(R) braneworld model with an explicit solution and find that the scalar perturbations are stable and the scalar zero modes can not be localized on the brane, which ensure that there is no extra long-range force and the Newtonian potential on the brane can be recovered.Comment: 13 pages, 3 figure

    Study on the mechanism of open-flavor strong decays

    Full text link
    The open-flavor strong decays are studied based on the interaction of potential quark model. The decay process is related to the s-channel contribution of the same scalar confinment and one-gluon-exchange(OGE) interaction in the quark model. After we adopt the prescription of massive gluons in time-like region from the lattice calculation, the approximation of four-fermion interaction is applied. The numerical calculation is performed to the meson decays in uu, dd, ss light flavor sector. The analysis of the D/SD/S ratios of b1ωπb_1\rightarrow \omega \pi and a1ρπa_1\rightarrow \rho \pi show that the scalar interaction should be dominant in the open-flavor decays

    Lamb wave signal retrieval by wavelet ridge

    Get PDF
    Lamb wave testing is one of the important methods in ultrasonic nondestructive testing. One of the key technologies in the Lamb wave testing is to get a clear signal. In this paper, a signal retrieval method for the Lamb wave signal from noisy signals is presented on the basis of its wavelet ridge analysis. After the wavelet transformation, the wavelet ridge of the Lamb wave signal is extracted and the signal is reconstructed by using its ridge as the characteristic parameter. Experimental results show that the Lamb wave signal is retrieved in the case of the white noise, the transient noise and the sine noise. The proposed method can retrieve the ultrasonic Lamb wave signal effectively

    Waiting, Banning, and Embracing: An Empirical Analysis of Adapting Policies for Generative AI in Higher Education

    Full text link
    Generative AI tools such as ChatGPT have recently gained significant attention in higher education. This study aims to understand how universities establish policies regarding the use of AI tools and explore the factors that influence their decisions. Our study examines ChatGPT policies implemented at universities around the world, including their existence, content, and issuance dates. Specifically, we analyzed the top 500 universities according to the 2022 QS World University Rankings. Our findings indicate that there is significant variation in university policies. Less than one-third of the universities included in the study had implemented ChatGPT policies. Of the universities with ChatGPT policies, approximately 67 percent embraced ChatGPT in teaching and learning, more than twice the number of universities that banned it. The majority of the universities that ban the use of ChatGPT in assessments allow individual instructors to deviate from this restrictive policy. Our empirical analysis identifies several factors that are significantly and positively correlated with a university's likelihood of having a ChatGPT policy, including the university's academic reputation score, being in an English-speaking country, and the general public attitudes toward ChatGPT. In addition, we found that a university's likelihood of having a ban policy is positively associated with faculty student ratio, citations, and the English-speaking country dummy, while negatively associated with the number of peer universities within the same country that have banned ChatGPT. We discuss the challenges faced by universities based our empirical findings.Comment: 33 pages with 2 figure

    Probing nuclear symmetry energy at high densities using pion, kaon, eta and photon productions in heavy-ion collisions

    Full text link
    The high-density behavior of nuclear symmetry energy is among the most uncertain properties of dense neutron-rich matter. Its accurate determination has significant ramifications in understanding not only the reaction dynamics of heavy-ion reactions especially those induced by radioactive beams but also many interesting phenomena in astrophysics, such as the explosion mechanism of supernova and the properties of neutron stars. The heavy-ion physics community has devoted much effort during the last few years to constrain the high-density symmetry using various probes. In particular, the pion-/pion+ ratio has been most extensively studied both theoretically and experimentally. All models have consistently predicted qualitatively that the pion-/pion+ ratio is a sensitive probe of the high-density symmetry energy especially with beam energies near the pion production threshold. However, the predicted values of the pion-/pion+ ratio are still quite model dependent mostly because of the complexity of modeling pion production and reabsorption dynamics in heavy-ion collisions, leading to currently still controversial conclusions regarding the high-density behavior of nuclear symmetry energy from comparing various model calculations with available experimental data. As more pion-/pion+ data become available and a deeper understanding about the pion dynamics in heavy-ion reactions is obtained, more penetrating probes, such as the kaon+/kaon0 ratio, eta meson and high energy photons are also being investigated or planned at several facilities. Here, we review some of our recent contributions to the community effort of constraining the high-density behavior of nuclear symmetry energy in heavy-ion collisions. In addition, the status of some worldwide experiments for studying the high-density symmetry energy, including the HIRFL-CSR external target experiment (CEE) are briefly introduced.Comment: 10 pages, 10 figures, Contribution to the Topical Issue on Nuclear Symmetry Energy in EPJA Special Volum

    Deterministic and Efficient Quantum Cryptography Based on Bell's Theorem

    Full text link
    We propose a novel double-entanglement-based quantum cryptography protocol that is both efficient and deterministic. The proposal uses photon pairs with entanglement both in polarization and in time degrees of freedom; each measurement in which both of the two communicating parties register a photon can establish one and only one perfect correlation and thus deterministically create a key bit. Eavesdropping can be detected by violation of local realism. A variation of the protocol shows a higher security, similarly to the six-state protocol, under individual attacks. Our scheme allows a robust implementation under current technology.Comment: 4 pages, 1 figure; published version with a note adde
    corecore