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Abstract Linear stability of braneworld models
constructed with multi-scalar fields is very different from that
of single-scalar field models. It is well known that both the
tensor and the scalar perturbations of the latter are stable at
linear level. However, in general there is no effective method
to deal with the stability problem of the scalar perturbations
for braneworld models constructed with non-minimally cou-
pled multi-scalar fields. In this work we present a systematic
covariant approach to deal with the scalar perturbations. By
introducing the orthonormal bases in field space and mak-
ing the Kaluza–Klein decomposition, we get a set of cou-
pled Schrödinger-like equations of the scalar perturbation
modes. Using the nodal theorem, we show that the result is
model-dependent. For superpotential derived brane models,
the scalar perturbations are stable, but there exist normaliz-
able scalar zero modes, which will result in unacceptable fifth
force on the brane. We also use this method to analyze the
f (R) braneworld model with an explicit solution and find
that the scalar perturbations are stable and the scalar zero
modes cannot be localized on the brane, which ensures that
there is no extra long-range force and the Newtonian poten-
tial on the brane can be recovered.

1 Introduction

The braneworld scenario has opened up a new way to search
for new physics beyond the Standard Model [1–3]. The
most famous braneworld models are the Randall–Sundrum
(RS) models [2,3], which were proposed to solve the gauge
hierarchy problem. In the original RS-I/II model, there are
two/one branes without thickness or inner structure (called
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thin branes). There is no background scalar field in the bulk
and the AdS5 geometry is obtained by adding a negative cos-
mological constant in the bulk and a brane tension on each
brane. In the RS-II model [3], a remarkable discovery is that
the four-dimensional gravity (the Newtonian potential) can
be recovered on the brane even though the extra dimension
is infinite [3–5].

However, to get the smooth version of the RS-II model,
scalar fields as material are introduced [6]. On the other hand,
in order to stabilize the size of the extra dimension in the RS
scenario, a bulk scalar is also necessary [7]. The most intuitive
idea is to consider a canonical scalar field. As was proposed in
Ref. [8], a kink scalar field can be used to construct a domain
wall configuration, so that ordinary particles can be confined
in a potential well. If gravity is included, then an RS-II like
braneworld model can be obtained, with a smooth asymp-
totically AdS5 geometry. Because of the domain wall con-
figuration, the four-dimensional massless graviton is trapped
in an effective potential well while the massless longitudinal
mode (scalar zero mode) cannot be localized, thus the four-
dimensional gravity can also be recovered in such models
[9–11]. The localization of standard model fields relies on
different mechanisms, namely, some special couplings [12–
15].

There is extended work in which multiple canonical scalar
fields were considered. The situation will become completely
different. This setup would lead to some interesting inter-
nal structures for the brane [16–18] and special properties
of localization of matter fields [19–22]. However, it is very
important to ensure that the linear perturbations are stable and
the scalar zero modes should not be localized on the brane
in order to recover the right effective four-dimensional grav-
ity. The stability of the scalar perturbations for such brane
was studied in Refs. [23–25]. In fact, the special model with
two scalars is the so called Bloch brane [18]. However, in
Ref. [23], it was shown that in such models only odd scalars
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can avoid the existence of scalar zero modes. Indeed, for
models constructed with two scalar fields, if the background
solutions are derived from superpotential, then a localized
scalar zero mode would appear inevitably [24]. As is well
known, a localized scalar zero mode would lead to an extra
long-range force that has never been observed, and hence it
is unacceptable.

In addition to the canonical fields, non-canonical struc-
tures are also considered because of their special dynamics.
For example, the Born–Infeld type matter action was widely
studied in the literature [26,27]. In addition, K-fields also
aroused great interests of cosmologists since this kind of
non-canonical scalar field is believed to be able to drive infla-
tion with generic initial conditions [28,29]. The domain wall
brane models constructed with K-field were proved to be sta-
ble under scalar perturbations [30–33]. This gives us inspira-
tion that the localized zero modes in braneworld model with
multiple canonical scalars may be avoided if the scalars are
non-canonical. However, we will not use K-fields. Instead,
we will investigate braneworlds generated by non-minimally
coupled multi-scalar fields, which would be non-canonical in
the Einstein frame. We are motivated to consider such mod-
els from different aspects. The first and natural reason comes
from string theory. It has been shown that in low energy limit,
the bosonic string theory reduces to scalar–tensor theory, not
general relativity. The study of braneworld models in scalar–
tensor theory gives a lower-dimensional understanding of
string theory. Besides, it is widely believed that the multiple
fields models would give very interesting braneworld struc-
tures [18,34–36], such as the brane splitting and the gravity
resonance. In Ref. [37], the domain wall brane constructed
with a single non-minimally coupled scalar field was studied.
The analysis on the full linear perturbations shows that the
massless graviton can be trapped on the brane, and the bound
state of the scalar perturbation mode should not exist, but it
still needs a rigorous proof. We expect to give a systematic
research on scalar perturbations of braneworlds with non-
minimally coupled multiple scalars, including their stability
and localization properties.

Our research is meaningful not only for the above-
mentioned braneworld models themselves, but also for
other models such as the widely studied f (R) braneworld
model [36,38–50], in which the scalar perturbations are still
not clear because of the higher derivatives in the perturba-
tion equations. It is well known that the f (R) gravity theory
is equivalent to the scalar–tensor theory, and both the non-
minimally coupling gravity theory and f (R) gravity theory
can be cast in terms of the Einstein frame but with non-
canonical scalar fields (see Sect. 4 for details). Hence a natu-
ral application of our results is the f (R) braneworld model.

In this paper we choose a general action and mainly study
the scalar perturbations of braneworlds generated by non-
minimally coupled multi-scalar fields in the Einstein frame,

by using some techniques developed in cosmology. The paper
is organized as follows. In the following section, we briefly
introduce our model and derive the perturbation equations of
the scalar modes. In Sect. 3, we investigate the perturbation
equations and analyze the stability of the massless scalar
modes. We deal with the scalar perturbations of the f (R)

braneworld model in Sect. 4 and give a summary in the last
section.

2 The model

2.1 General setup

Following Ref. [51], we adopt the action

S =
∫

dnx
√−g

[
1

2κn
R

+P(GI J , X
I J , f

J1···Jna
a (�I ))

]
, (2.1)

where κn = 8πGn with Gn the n-dimensional Newtonian
constant and will be set to be 1 (κn = 1) in this paper
for simplicity, X I J = − 1

2∂M�I ∂M�J is the kinetic func-
tion, G I J = G I J (φK ) can be interpreted as the metric on

the field space,1 and f
J1···Jna
a (�I ) are some field-space ten-

sors with the subscript a introduced to discriminate different
kinds of such tensors. Here we assume that P depends on

the scalar fields only though field-space tensors f
J1···Jna
a . We

also assume that there is no spacetime derivatives of fields in

f
J1···Jna
a . The most important and simplest case is the poten-

tial V (�I ), which is a field-space scalar. In this paper, we
assume that the field-space tensors are all scalars for simplic-
ity, and hence

P = P(GI J , X
I J , fa(�

I )). (2.2)

If we can choose such coordinates {�̃} to make the field-space
metric G trivial, i.e.

GI J
∂�̃I

∂�K

∂�̃J

∂�L
= δK L , (2.3)

then the corresponding curvature RI J K L constructed from
the field-space metric GI J vanishes. The simplest case is

P = GI J X
I J − V (�). (2.4)

When GI J = δI J , all scalar fields are canonical. The ansatz
of the background metric is

1 In the following, indices I, J, K , L , R, S denote field-space indices,
which are lowered or raised by the field-space metric G or its inverse,
while M, N , P, Q etc. run over n-dimensional ones of the spacetime.
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ds2 = a2ημνdxμdxν + dy2 = e2A(y)ημνdxμdxν + dy2.

(2.5)

Here we use the covariant approach developed in Ref. [51].
Recall that Einstein gravity can be written in the Arnowitt–
Deser–Misner (ADM) form:

ds2 = N 2dy2 + qμν(dx
μ + Nμdy)(dxν + N νdy), (2.6)

S =
∫

dnxN
√−q

{
1

2κn

[(n−1)

R

− 1

N 2 q
μρqνσ

(
EμνEρσ − EμρEνσ

) ]
+ Lm

}
, (2.7)

where (n−1)R is the (n−1)-dimensional curvature scalar con-
structed from the induced metric qμν , and Eμν is defined by

Eμν ≡ 1

2
(∂yqμν − Nμ|ν − Nν|μ) (2.8)

with a vertical bar denoting a covariant differentiation with
respect to qμν . In terms of the ADM variables, the kinetic
term X I J of the scalar fields can be expressed as

X I J = −1

2
gMN∂M�I ∂N�J

= − 1

2N 2 ∂̃y�
I ∂̃y�

J − 1

2
qμν∂μ�I ∂ν�

J , (2.9)

where ∂̃y ≡ ∂y − Nμ∂μ.

2.2 The action and perturbations

In order to obtain the linear perturbed equations we write the
scalar fields and the induced metric as follows:

�I (x, y) = �I
0(y) + δ�I (x, y), (2.10)

qμν(x, y) = q(0)μν(y) + hμν(x, y), (2.11)

where q(0)μν = a2(y)ημν is the background metric. The per-
turbation hμν can be decomposed into the transverse traceless
tensor h̄μν , transverse vector v̄ν and scalars ψ, E :

hμν = h̄μν + 2a2∂(μv̄ν) − 2a2(ημνψ − ∂μ∂νE), (2.12)

where ηρμ∂ρ h̄μν = ημν h̄μν = 0, ημν∂μv̄ν = 0. Fluctua-
tions in N and Nμ are

N = 1 + N(1), Nμ = N̄μ + ∂μB, (2.13)

where ημν∂ν N̄μ = 0. Note that perturbations QI = δ�I +
uI
A′ ψ are gauge invariant, where uI ≡ ∂y�

I
0. In Einstein

theory, the (n−1)(n−2)/2 spin-2 tensor modes are physical
degrees of freedom, and the vector and scalar modes are
non-dynamical since they just give constraint equations. The
tensor modes are easy to deal with at the linear level since
they are decoupled from the other perturbation modes. The

vector modes can be gauged away. In our model, one can
easily check that the tensor modes satisfy

�h̃μν + ∂2
z h̃μν −

(
3

2
∂2
z A + 9

4
(∂z A)2

)
h̃μν = 0, (2.14)

with h̃μν(xσ , z) = εμν(xσ )ψ(z), where the conformally flat
coordinate z is defined by dy = adz. Note that h̃μν is canon-

ical, and we relate h̄μν with h̃μνe− 3
2 A = h̄μν . The tensor

mode is obviously the same as the standard case, and it gives

the zero mode solution ψ0(z) = e
3
2 A. The localization con-

dition is

∫ +∞

−∞
|ψ0(z)|2dz < ∞. (2.15)

For asymptotically AdS5 solutions, like A(y) = − log(cosh
(ky)), this condition can be satisfied, namely the graviton
zero mode can be localized, which is necessary but not suffi-
cient for the recovering of four-dimensional gravity. In fact,
we also need to ensure that the scalar perturbations are stale
and the scalar zero modes are not localized on the brane.

For the scalar perturbations, we choose the flat gauge, i.e.
ψ = E = 0. So QI = δ�I . In the flat gauge conditions
the perturbations of the brane metric on each slice vanish,
which is very useful when we use the ADM formula. It is
worth to emphasize that it is safe for the tensor and scalar
perturbations. However, we would lose some information for
the vector component. At the non-perturbative level, varying
with respect to N and Nμ we obtain the constraint equations:

1

2

[
(n−1)R + 1

N 2 q
μρqνσ

(
EμνEρσ − EμρEνσ

)] + P

+ 1

N 2 P〈I J 〉∂̃y�I ∂̃y�
J = 0, (2.16)

[
1

N
(qνρEμρ − qρσ Eρσ δν

μ)

]
|ν

+ 1

N
P〈I J 〉∂̃y�I ∂μ�J = 0, (2.17)

where P〈I J 〉 ≡ 1
2

(
∂P

∂XI J
+ ∂P

∂XI J

)
.

We can extract the background equations of motion from
the first-order terms of the action:

S1 =
∫

dnxan−1
[(

− 1

2
(n − 2)(n − 1)A′2

+P0 + P〈I J 〉uI u J
)
N(1) + (n − 2)A′Nμ

(1),μ

−P〈I J 〉Dy Q
I u J + Pa fa;I QI

]
, (2.18)

where P0 is evaluated at the background solution, Dy =
uIDI with DI the covariant derivative compatible with the
field-space metricGI J , and Pa ≡ ∂P/∂ fa . Taking a variation
of (2.18) with respect to N(1) and QI , we obtain
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(n − 2)(n − 1)A′2 = 2P0 + 2P〈I J 〉uI u J , (2.19)
1

an−1Dy

(
an−1P〈I J 〉uJ

)
= −Pa fa;I . (2.20)

From Eqs. (2.19) and (2.20) we can derive another Einstein
equation:

(n − 2)A′′ = −P〈I J 〉uI u J . (2.21)

To obtain the perturbed equations, we can calculate the
quadratic order action

S2 =
∫

dnx an−1
{

1

2

[
LS + P〈I J 〉〈K L〉Dy Q

I u JDy Q
K uL

−2P〈I J 〉aDy Q
I u J fa;K QK

+Pab fa;I fb;J QI QJ
]

− (n − 2)A′N(1)N
μ

(1),μ

−P〈I J 〉Nμ

(1)∂μQ
I uJ

+N(1)[P〈I J 〉Dy Q
I u J + Pa fa;I QI

+(−P〈I J 〉〈K L〉Dy Q
K uL + P〈I J 〉a fa;K QK )uI u J ]

+1

2
N 2

(1)[(n − 1)(n − 2)A′2 − P〈I J 〉uI u J

+P〈I J 〉〈K L〉uI u J uK uL ]
}

, (2.22)

where

LS = −P〈I J 〉[R(I
K LRu

J )uRQK QL + Dy Q
IDy Q

J ]
−P〈I J 〉qμν∂μQ

I ∂νQ
J + Pa fa;I J QI QJ . (2.23)

Here we have used N(1)μ = ∂μB for the scalar perturbation
and dropped boundary terms. Varying the quadratic action
(2.22) with respect to Nμ

(1) and N(1) gives the following con-
straint equations:

N(1) = 1

(n − 2)A′ P〈I J 〉QI uJ , (2.24)

− (n − 2)A′

a2 �B = PS − (
P〈I J 〉〈K L〉Dy Q

K uL

−P〈I J 〉a fa;K QK )
uI u J

+N(1)P〈I J 〉〈K L〉uI u J uK uL , (2.25)

where � = ημν∂μ∂ν is the d’Alembert operator on the brane,
and

PS = P〈I J 〉Dy Q
I u J + Pa fa;I QI

+N(1)

[
(n − 1)(n − 2)A′2 − P〈I J 〉uI u J ]. (2.26)

The two Lagrange multipliers N(1) and B can be determined
by QI . Varying the quadratic order action with respect to QI

and eliminating the Lagrange multipliers, we can obtain the
perturbed equations. Especially, for the simplest case P =
GI J X I J − V , we have P〈I J 〉 = GI J , f = V , PV = −1, and
so Eqs. (2.19)–(2.21) become

(n − 1)(n − 2)A′2 = GI J u
I u J − 2V, (2.27)

1

an−1Dy

(
an−1uI

)
= V I = G I J ∂J V, (2.28)

(n − 2)A′′ = −uI u I . (2.29)

In this case the quadratic order action can be simplified as

S2 =
∫

dnx an−1
{

1

2

[
− GI J

[
R(I

K LRu
J )uRQK QL + Dy Q

IDy Q
J
]

− a−2GI Jη
μν∂μQ

I ∂νQ
J − V;I J QI QJ

]

+ N(1)

[GI JDy Q
I u J − V;I QI ]+N 2

(1)V − (n − 2)A′N(1)N
μ

(1),μ

+GI J N
μ

(1)∂μQ
I u J

}
. (2.30)

The constraint equations read

N(1) = 1

(n − 2)A′ QI u
I , (2.31)

− (n − 2)A′

a2 �B = uIDy Q
I − V;I QI − 2N(1)V ≡ C.

(2.32)

Varying the action (2.30) with respect to QI and substituting
the metric perturbations N(1) and Nμ

(1) by (2.31), we obtain

1

an−1Dy(a
n−1Dy QI ) + 1

a2 �QI − MJ
I QJ = 0, (2.33)

where

MI J = V;I J − RI K J Lu
K uL + UI J , (2.34)

UI J = 2

(n − 2)an−1Dy

(
an−1

A′ uI u J

)
. (2.35)

The second term RI K J LuK uL in Eq. (2.34) is a Jacobi term,
and the last one UI J is an effect of the curved spacetime.

The effective action for QI is

S2 = 1

2

∫
dnx an−1[−GI JDy Q

IDy Q
J

−a−2GI Jη
μν∂μQ

I ∂νQ
J − MI J Q

I QJ ]. (2.36)

The localized states should satisfy

∫ +∞

−∞
dyan−3GI J Q

I QJ < +∞. (2.37)

If we define the tetrad fields satisfying

eiI e
j
J δi j = GI J , eiI e

I
j = δij , Dye

i
I = 0, (2.38)

then the fields QI can be spanned by the vierbein fields:
QI = ∑

i e
i
I Qi (m2, y)eipμxμ

with ημν pμ pν = −m2. Now
Eq. (2.33) becomes

1

an−3 ∂y(a
n−1∂y Qi ) + m2Qi − a2M j

i Q j = 0, (2.39)

123
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where M j
i = MJ

I e
j
J e

I
i . Defining Qi = a−(n−2)/2 Q̃i , we

can rewrite Eq. (2.39) as the following coupled Schrödinger-
like equations:

−∂2
z Q̃i +

[(
(n − 2)2

4
(∂z A)2 − (n − 2)

2
∂2
z A

)
δ
j
i

+ a2M j
i

]
Q̃ j = m2 Q̃i . (2.40)

3 Stability and zero modes of the scalar perturbations

Contracting Eq. (2.33) with uI , we have

A′

an−1

(
an−1C
A′

)′
= −m2

a2 u
I QI . (3.1)

Using the definition of C in (2.32) and the constraint equation
for N(1) in (2.31), we can obtain the anisotropic constraint
from Eq. (3.1):

1

an−3 (an−3B)′ = N(1). (3.2)

This constraint can be derived from the linearised Einstein
equations without choosing the flat gauge, and it is not inde-
pendent. For m2 = 0, it is the Eq. (3.2) that fixes B, but
not the constraint (2.32). This means that we do not lose any
equations, which does happen for the vector perturbation if
a gauge condition is chosen before calculating the quadratic
order action.

By a similar process we can prove that it still holds for the
general case (2.22). For a single-scalar braneworld model its
perturbation equation can be factorized, and it can be rewrit-
ten as a supersymmetric equation after redefining perturbed
field. So the braneworld constructed by a single scalar field
is stable if there exists no ghost (PX > 0). This conclusion
can be generalized to the case of a K field.

In order to recover normal gravitational potential on the
brane, we require that no massless and tachyon modes local-
ize on the brane. For a general multi-field solution, as far
as we know, there is no result available analogous to that
of the tensor modes. Fortunately, there are some mathe-
matical results which can be used to deal with the coupled
Schrödinger equation (2.40). According to the nodal theo-
rem of Schrödinger equation [23–25,52], one could define
a solution matrix with all the zero mode solutions, then the
number of bound states (in our case they are tachyons) equals
the number of zero roots of the determinant. In other words,
now we can determine the stability of braneworld solutions
using the solutions of the zero modes.

For multiple scalar cases, we can separate the field space
into the background trajectory direction and its orthogonal
space, and the corresponding perturbed modes are Qσ and
Qs , respectively. The divergent termUI J only directly affects

the modes Qσ , while the Jacobian term RI K J LuK uL only
acts non-trivially on the modes Qs .

Since the potential UI J is singular near the position of the
brane, we should choose proper initial conditions at y = 0.
The first initial conditions are QI (0) = 0, which require
Q′

σ (0) = 0. So Q′
s(0) and Q′′

σ (0) are initial parameters.
This technique has been widely used in cosmology [53–55]
and has been proved to be very fruitful. All of the inde-
pendent Q′

s(0) and Q′′
σ (0) give all possible states satisfying

QI (0) = 0. These solutions form a solution matrix. Accord-
ing to the nodal theorem for coupled systems of Schrödinger
equations [52], the number of zeros of its determinant equals
the number of the tachyon fields.

There are other possible initial conditions. Apart from a
singular solution, we can choose Qs(0) = c, Q′

s(0) = 0.
The singular solution can also satisfy this condition. These
solutions form another solution matrix. For this section no
mathematically rigorous theorem exists. However, there are
some hints which suggest that a similar result is available for
this section [23,24].

For a double-field model, we can define σ I = uI
u , u ≡

|uI | = √−(n − 2)A′′, and the adiabatic mode Qσ = σ I QI .
In general another vector s I can be a unit vector orthogonal

to σ I . If ω ≡ |DyσI | �= 0; we can choose s I = Dyσ
I

|Dyσ I | ,
and the entropy mode is then Qs = s I QI . The localizable
condition (2.37) becomes

∫ +∞

−∞
dyan−3(Q2

s + Q2
σ ) < ∞. (3.3)

Now we consider the m2 = 0 limit. The massless modes
obey the following equations and constraints:

1

an−1Dy(a
n−1Dy QI ) − V;I J QJ + RI K J Lu

K uL QJ

−U J
I QJ = 0, (3.4)

C = uIDy Q
I − V;I QI − 2

(n − 2)A′ QI u
I V = 0. (3.5)

The constraint (3.5) is compatible with the perturbed equa-
tions (2.33).

We can write the singular massless mode explicitly:

QI = uI /A
′. (3.6)

We take a double-field model for example. Then the con-
straints (2.31) and (2.32) become

N(1) = 1

(n − 2)A′ uQσ , (3.7)

C = u

(
∂y Qσ − u′

u
Qσ + A′′

A′ Qσ − 2ωQs

)

= − (n − 2)A′m2

a2 B. (3.8)

123
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Contracting Eq. (2.33) with s I yields

∂2
y Qs + (n − 1)A′∂y Qs −

(
Vss − RI K J Lu

K uLs I s J − 3ω2

−m2

a2

)
Qs + 2ω

u
C = 0, (3.9)

with Vss = V;I J s I s J . When ω = 0, Qσ and Qs decouple
with each other. Then the mode Qσ is stable and the stability
of the mode Qs can be determined by a single Schrödinger
equation.

For the zero modes of the double-scalar model, we rewrite
the constraint and the perturbed equations as follows:

∂2
y Qs + (n − 1)A′∂y Qs − (Vss − RI K J Lu

K uLs I s J

−3ω2)Qs = 0, (3.10)

∂y Qσ − u′

u
Qσ + A′′

A′ Qσ − 2ωQs = 0. (3.11)

In the massless limit the modes Qσ and Qs are decoupled.
Regardless of the constraint (3.5), Eq. (3.1) for the mass-

less case p2 = 0 yields

C = c1A
′e−(n−1)A. (3.12)

c1 is a constant. It is clear that the constraint (3.5) requires
c1 = 0. The physical massless modes should satisfy this con-
straint. However, other modes have no corresponding con-
straint. Therefore, in order to analyze the stability of this
system, we must loosen this constraint. It gives an inhomo-
geneous equation. We can write the equation of the zero mode
in the following form:

∂2
y Qs + (n − 1)A′∂y Qs − (Vss − RI K J Lu

K uLs I s J

−3ω2)Qs = −2ω

u
C. (3.13)

If c1 = 0, then it is homogeneous, and its initial conditions
Qs(0) = 0, Q′

s(0) = 1 or Qs(0) = 1, Q′
s(0) = 0 can

give possible physical modes; If c1 = 1, the homogeneous
initial condition Qs(0) = 0, Q′

s(0) = 0 gives an additional
solution.

From Eq. (3.11) it is easy to obtain

A′

u
Qσ =

∫
dy

A′

u

(C
u

+ 2ωQs

)
. (3.14)

If C = Qs = 0, we get the universal solution (3.6). Redefin-

ing the perturbed fields Q̃s = a
n−1

2 Qs , Eq. (3.10) can be
written as a Schrödinger-like equation

− ∂2
y Q̃s + V f Q̃s = 0, (3.15)

where the potential V f is given by

V f = Vss − RI K J Lu
K uLs I s J − 3ω2 + (n − 1)2

4
A′2

+n − 1

2
A′′. (3.16)

From the above potential we can know whether the zero mode
can be localized. According to the conjectures proposed in
Ref. [24], if there is no localized state in Eq. (3.15), then the
zero mode cannot have a zero point.

We should mention a very special category:

V = (n − 2)2

2
G I JW,I W,J − (n − 1)(n − 2)

2
W 2, (3.17)

A′ = −W, uI = (n − 2)G I JW,J , (3.18)

where W is a superpotential. For a superpotential solution,
one finds that its linearized perturbed equations can be written
as follows [56]:

(
−δ IJDy − Z I

J + (n − 1)δ IJW
) (

δ JKDy − Z J
K

)
QK = m2

a2 QI

(3.19)

with

Z I
J = (n − 2)

(
W I

;J − W IWJ

W

)
. (3.20)

It is supersymmetric:∫
dye(n−3)Am2QI QI

=
∫

dyan−1QI

(
−δ IJDy − Z I

J

+(n − 1)Wδ IJ

) (
δ JKDy − Z J

K

)
QK

=
∫

dyan−1|Dy Q
I − Z I

J Q
J |2 ≥ 0. (3.21)

So m2 ≥ 0; the model is stable. From Eq. (3.21), the zero
modes satisfy

Dy Q
I − Z I

J Q
J = 0. (3.22)

Contracting with uI , we obtain the constraint (3.12). For the
zero modes of the superpotential solutions, the constraint
(3.12) is a conclusion of the perturbation equations. Whether
the massless modes can be localized is totally determined
by the asymptotic behavior of the background solution. If W
reaches its minimum, there always exist some bound mass-
less states. For the double-scalar superpotential case, from
Eq. (3.22) we derive

Q′
s − (n − 2)WssQs = 0, (3.23)

where Wss = WI J s I s J . Qs and Qσ can be given by

Qs = e(n−2)
∫

dyWss , (3.24)

Qσ =
√
W ′
W

∫
dy

ωW√
W ′ Qs . (3.25)

123



Eur. Phys. J. C (2018) 78 :131 Page 7 of 10 131

This solution can be normalized. It means that there exists a
remnant massless scalar field on the brane. For the case of
five dimensions, this result is in conflict with observations
and is not acceptable [24].

4 Stability of f (R) braneworld

4.1 The Einstein frame formalism

The above method can be generalized to analyze the stability
of other gravity theories. The simplest ones are non-minimal
coupling gravity theories. In this section, we deal with the
f (R) gravity theory which can be treated as a special non-
minimal coupling gravity theory.

The action of the multi-field metric f (R) gravity reads

S =
∫

dnx
√−g

(
1

2
f (R) − 1

2
gMN ∂Mφ∂Nφ − V (φ)

)
.

(4.1)

Introducing an auxiliary field χ , the action (4.1) can be writ-
ten as

S =
∫

dnx
√−g

[
1

2
fR(χ)R − 1

2
gMN ∂Mφ∂Nφ − V (φ)

−1

2
(χ fR − f )

]
, (4.2)

where fR ≡ d f/dR. The equation of motion for the scalar
field χ is χ = R. Making a conformal transformation g̃MN =
e2ϕgMN with ϕ = 1

n−2 ln fR(χ), one can obtain

S =
∫

dnx
√−g̃

{
1

2

[
R̃ − (n − 1)(n

−2)g̃MN ∂Mϕ∂Nϕ
]

+ L̃m

}
, (4.3)

L̃m = − 1

2 fR(χ)
g̃MN ∂Mφ∂Nφ − f

− n
n−2

R

[
V (φ)

z +1

2
(χ fR − f )

]
. (4.4)

In this frame the gravity action is the Einstein–Hilbert form;
however, the matter fields are non-minimally coupled. For
convenience we define a new scalar field:

ζ =
√
n − 1

n − 2
ln fR(χ) = 1

2K
ln fR(χ), (4.5)

where K =
√

n−2
4(n−1)

is a positive constant. The metric of the

field space (�I = (ζ,φ)) is

GI Jd�Id�J = dζ 2 + e−2K ζ ds2
φ . (4.6)

It is a warped geometry and the warped factor is e−2K ζ . For
a non-trivial f (R) gravity, fRR �= 0, the corresponding Rie-

mann curvature does not vanish. In particular, if the original
scalar fields are minimally coupled, the resulting field space
is an AdS space.

Different f (R) theories give different potentials:

Ṽ (ζ,φ) = e− 2n
n−2 K ζ

[
V (φ) + 1

2

(
e2K ζ χ(ζ )

− f (χ(ζ )))

]
. (4.7)

We should transform the physical coordinates to the con-
formal ones, and e2A should also be replaced by e2(A+ϕ).
In Ref. [45], a five-dimensional flat braneworld solution for
f (R) = R + γ R2 was obtained:

ds2 = e2Aημνdxμdxν + dy2, (4.8)

V (φ) = λ(5)(φ2 − v2)2 + �5, (4.9)

φ(y) = v tanh (ky), (4.10)

eA(y) = sech(ky), (4.11)

where

λ(5) = 3

784γ
, v = 7

√
3

29
, �5 = − 477

6728

1

γ
, k =

√
3

232γ
.

(4.12)

In this model γ is the only one parameter.
Converting to double scalar fields in the Einstein frame,

the new scalar field and the potential are

ζ = 2√
3

ln(2γχ + 1), (4.13)

Ṽ = e−10K ζ/3
[
λ(5)(φ2 − v2)2 + �5 + (e2K ζ − 1)2

8γ

]
,

(4.14)

where K = √
3/4. In conformal coordinates, we have

kz = sinh ky, (4.15)

φ = v
kz√

1 + k2z2
, e2A = 1

1 + k2z2 , (4.16)

ζ = 2√
3

ln(2γχ + 1) = 2√
3

ln

(
14

29
+ 21

29

1

1 + k2z2

)
.

(4.17)

In this model, the perturbed equation can be independent of
the parameter γ , and the configuration of the perturbation
potential V f in Eq. (3.16) under the φ coordinate is shown
in Fig. 1a.

From the plot, we can conclude that there is no localized
scalar mode. Figure 1b gives the numerical zero mode Q̃s ,
from which it can be seen that there is no zero point in the
φ > 0 region.
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(a) (b)

Fig. 1 The perturbation potential V f and the even zero mode solution Q̃s for f (R) = R + γ R2. a The perturbation potential. b The even zero
mode

(b)(a)

Fig. 2 The determinant of the solution matrix for f (R) = R + γ R2. a The determinant of the solution matrix. b Zoom in of a around φ = 0

Fig. 3 The determinant of the matrix γMI J (the solid red line) and
γM11 (the dashed blue line) for f (R) = R + γ R2

4.2 Stability of f (R) brane

The odd solution and the homogeneous solution of the inho-
mogeneous equations form a solution matrix. As is shown in
Fig. 2, the numerical determinant of the solution matrix has
no zero point. So there is no tachyon and the model is stable.
We can also see that the massless mode cannot be localized.
Actually, we find that the matrix MI J is positive definite for
this special solution. The determinant of the matrix γMI J

and the component γM11 are plotted in Fig. 3.

For all eigenvalues m2, we have
∫

dym2a2GI J Q
I QJ =

∫
dya4(GI J ∂y Q

I ∂y Q
J

+MI J Q
I QJ ) > 0. (4.18)

So m2 > 0. It agrees with the previous numerical result. So
the background solution is stable and the zero modes cannot
be localized on the brane.

5 Conclusions

In this paper, we have investigated the stability of the ten-
sor and scalar perturbations for flat braneworld models con-
structed by non-minimally coupled multi-scalar fields in the
Einstein frame.

Firstly, we studied the stability of the tensor perturbation
and find that its dynamical equation can be written as a super-
symmetric Schrödinger equation, so it is stable at linear level.
It was also shown that the tensor zero mode can be localized
on the brane if the bulk geometry is asymptotically AdS5.
This is the same as the case of a single-field brane model.

Secondly, we presented a systematic covariant approach in
field space to deal with the stability problem for the scalar per-
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turbations. The covariant quadratic order action and the cor-
responding first-order perturbed equations were derived. But
these equations cannot be used to analyze the stability of the
scalar perturbations. Thus, by introducing the orthonormal
bases in field space and making the Kaluza–Klein decompo-
sition, we showed that the Kaluza–Klein modes of the scalar
perturbations satisfy a set of coupled Schrödinger-like equa-
tions. It was shown that these equations for the scalar pertur-
bations are complete. Thus, according to the nodal theorem
for the coupled Schrödinger equations, we can analyze the
stability of the scalar perturbations and localization of the
scalar zero modes. For brane models constructed with the
superpotential method, it was shown that the scalar perturba-
tions are stable, while the scalar zero modes are normalizable
and can be localized on the brane. Such localized scalar zero
modes will result in an unacceptable fifth force on the brane.

Lastly, we applied this approach to the f (R) grav-
ity coupled with one or more scalar fields. By introduc-
ing an auxiliary field and a conformal transformation, the
f (R) theory was changed to the Einstein frame with non-
minimally coupled multi-scalar fields. This procedure leads
to a warped field-space geometry. Especially, we tested a par-
ticular f (R)-brane solution given in Ref. [45] and found that
the scalar perturbations are stable and there is no normaliz-
able scalar zero mode. Besides, it has been shown that the
tensor zero mode of the perturbations can be localized on the
f (R) brane [45]. Therefore, we can conclude that the f (R)

brane model is stable under the linear tensor and scalar per-
turbations and the four-dimensional Newtonian potential on
the brane can be recovered.

We can also analyze scalar perturbations of other modi-
fied gravity theories by quadratic order action. Eddington-
inspired Born–Infeld gravity is an example [57–59], which
can be rewritten as a bimetric-like theory [60,61]. We leave
this for future work.
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