16 research outputs found

    Experimental Study of Breakage of Particles under Compression

    Get PDF
    Granular materials are used widely and can be seen in natural and industrial applications such as sand bags or pharmaceutical pills. During their manufacturing, processing, transport and use, granular materials are subjected to various kinds of loadings. If the amplitude of the loading is above the strength threshold, particles constituting granular materials may fracture. It is very important to understand the failure of particles under these loading conditions to prevent or control their failure during all stages of their manufacturing and use. Better characterization of the fracture behavior of particles composed of different materials and sizes will allow more precise application and better maintenance of granular materials in commercial usage. The effects of size and material properties on the deformation and fracture behavior of granular particles are studied by investigating particles from three different size ranges for three different materials. The mechanical behavior is characterized by force-displacement and stress-strain plots under quasi-static compression (strain rate = 10-2s-1). Along with the deformation behavior, the strengths of particles are also recorded and Weibull distribution is fitted to the fracture stresses. It was observed that the smaller particles break at lower forces but actually withstand higher stress at fracture. The calculated Weibull moduli for different size range and materials show that the flaw population from the manufacturing process is different for different sizes and materials. This study shows that size and material properties alter the fracture stresses. Future experiment can be performed for the same particles under dynamic compression to better understand effects of strain rate on the fracture of particles

    Dynamic Response of Textile Material under Transverse Impact

    Get PDF
    Textile materials, such as Dyneema and Kevlar, are the major raw materials for state of the art military or personal security armor vests. However, in impact experiments, actual observed penetration speed is much lower than theoretically predicted penetration speed. Each armor vest is composed of high performance yarns which are woven together to form fabrics, which when stacked together form a vest. Understanding penetration behavior of yarns is essential to evaluate the performance of fabric, which will be useful for the design of better vests. The project is composed of three parts: static experiments, dynamic yarn experiments and dynamic fabric experiments. In the static experiments, several types of textile materials will be loaded onto MTS testing machine under slow and constant speed by different projectiles, such as Fragment Simulating Projectile, Hemispherical Nose Projectile and Blade Projectile. Secondly, a powder gun will be used to provide high speed impact conditions. Several yarns will be impacted at high velocities and imaged simultaneously using a high speed camera. Finally, aforementioned experimental conditions will be utilized for fabrics experiments. At this preliminary phase of the investigation, only expected results are being reviewed. In the yarn experiments, impact angle, between impacted region (shear wave propagation region) and impacting region (transvers wave propagation region), is expected to be approximately constant. In the fabric experiments, the goal is to acquire the range of the penetration speeds for different types of textile materials with different number of layers. The acquired data will yield a strong background database for further improvement and adjustment in personal vest design

    Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading

    Get PDF
    Using a high-speed camera and an intensified charge-coupled device (ICCD), a simultaneous X-ray imaging and diffraction technique has been developed for studying dynamic material behaviors during high-rate tensile loading. A Kolsky tension bar has been used to pull samples at 1000 s(−1) and 5000 s(−1) strain-rates for super-elastic equiatomic NiTi and 1100-O series aluminium, respectively. By altering the ICCD gating time, temporal resolutions of 100 ps and 3.37 µs have been achieved in capturing the diffraction patterns of interest, thus equating to single-pulse and 22-pulse X-ray exposure. Furthermore, the sample through-thickness deformation process has been simultaneously imaged via phase-contrast imaging. It is also shown that adequate signal-to-noise ratios are achieved for the detected white-beam diffraction patterns, thereby allowing sufficient information to perform quantitative data analysis diffraction via in-house software (WBXRD_GUI). Of current interest is the ability to evaluate crystal d-spacing, texture evolution and material phase transitions, all of which will be established from experiments performed at the aforementioned elevated strain-rates

    High Speed X-ray Phase Contrast Imaging of Energetic Composites under Dynamic Compression

    Get PDF
    Fracture of crystals and frictional heating are associated with the formation of “hot spots” (localized heating) in energetic composites such as polymer bonded explosives (PBXs). Traditional high speed optical imaging methods cannot be used to study the dynamic sub-surface deformation and the fracture behavior of such materials due to their opaque nature. In this study, high speed synchrotron X-ray experiments are conducted to visualize the in situ deformation and the fracture mechanisms in PBXs composed of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and hydroxyl-terminated polybutadiene binder doped with iron (III) oxide. A modified Kolsky bar apparatus was used to apply controlled dynamic compression on the PBX specimens, and a high speed synchrotron X-ray phase contrast imaging (PCI) setup was used to record the in situ deformation and failure in the specimens. The experiments show that synchrotron X-ray PCI provides a sufficient contrast between the HMX crystals and the doped binder, even at ultrafast recording rates. Under dynamic compression, most of the cracking in the crystals was observed to be due to the tensile stress generated by the diametral compression applied from the contacts between the crystals. Tensile stress driven cracking was also observed for some of the crystals due to the transverse deformation of the binder and superior bonding between the crystal and the binder. The obtained results are vital to develop improved understanding and to validate the macroscopic and mesoscopic numerical models for energetic composites so that eventually hot spot formation can be predicted

    Mechanical response of pig skin under dynamic tensile loading

    Get PDF
    Uniaxial tensile experiments were performed on pig skin to investigate the tensile stressestrain response at both quasi-static and dynamic rates of deformation. A Kolsky tension bar, also called a split Hopkinson tension bar (SHTB), was modified to conduct the dynamic experiments. Semiconductor strain gages were used to measure the low levels of the transmitted signal from pig skin. A pulse shaper technique was used for generating a suitable incident pulse to ensure stress equilibrium and approximate constant strain rate in the specimen of a thin skin sheet wrapped around the ends of the bars for minimizing radial inertia. In order to investigate the strain-rate effect over a wide range of strain rates, quasi-static tests were also performed. The experimental results show that pig skin exhibits rate-sensitive, orthotropic, and non-linear behavior. The response along the spine direction is stiffer at lower rate but is less rate sensitive than the perpendicular direction. An Ogden model with two material constants is adopted to describe the rate-sensitive tensile behavior of the pig skin

    Effects of gage length, loading rates, and damage on the strength of PPTA fibers

    Get PDF
    Axial tension and transverse compression experiments on single fibers were performed to investigate the mechanical behavior of three high-performance fibers (Kevlar ®, Kevlar ® 129, and Twaron ®) with diameters in the order of 9-12 μm. The single fibers were manufactured from 1998 through 2008. A miniaturized tensile Kolsky bar was used to determine the tensile response of PPTA single fibers at a high strain rate. Gage length and strain rate were found to have minimum effects on the tensile strength of PPTA single fibers. Manufacturing time over a decade was found to have negligible effects on the tensile strength of the fibers. Initial transverse compression on the fibers reduces their ultimate tensile strengths. A high resolution scanning electron microscope (SEM) was also used to examine the fracture modes of transversely deformed fibers. Different types of fracture morphology were observed

    The Development of a High Rate Tensile Testing System for Micro Scaled Single Crystal Silicon Specimens

    No full text
    Structures have been built at micro scales with unique failure mechanisms that are not yet understood, in particular, under high-rate loading conditions. Consequently, microelectromechanical systems (MEMS) devices can suffer from inconsistent performance and insufficient reliability. This research aims to understand the failure mechanisms in micro-scaled specimens deforming at high rates. Single-crystal silicon (SCS) micro specimens that are 4 mu m thick are subjected to tensile loading at an average strain rate of 92 s(-1) using a miniature Hopkinson tension bar. A capacitance displacement system and piezoelectric load cell are incorporated to directly measure the strain and stress of the silicon micro specimens. The average dynamic elastic modulus of the silicon micro specimens is measured to be 226.8 +/- 18.50 GPa and the average dynamic tensile strength of the silicon is measured to be 1.26 +/- 0.310 GPa. High-speed images show that extensive fragmentation of the specimens occurs during tensile failure
    corecore