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a b s t r a c t

Uniaxial tensile experiments were performed on pig skin to investigate the tensile stressestrain response
at both quasi-static and dynamic rates of deformation. A Kolsky tension bar, also called a split Hopkinson
tension bar (SHTB), was modified to conduct the dynamic experiments. Semiconductor strain gages were
used to measure the low levels of the transmitted signal from pig skin. A pulse shaper technique was
used for generating a suitable incident pulse to ensure stress equilibrium and approximate constant
strain rate in the specimen of a thin skin sheet wrapped around the ends of the bars for minimizing radial
inertia. In order to investigate the strain-rate effect over a wide range of strain rates, quasi-static tests
were also performed. The experimental results show that pig skin exhibits rate-sensitive, orthotropic,
and non-linear behavior. The response along the spine direction is stiffer at lower rate but is less rate
sensitive than the perpendicular direction. An Ogden model with two material constants is adopted to
describe the rate-sensitive tensile behavior of the pig skin.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The mechanical behavior of biological tissues under dynamic
loading has been an interest in various applications, ranging from
mechanical modeling of the body parts for the surgical recon-
struction procedures using the body tissues to the prediction of
human skin damage caused by vehicle crashes or punching acci-
dents [1e3]. In order to understand the rate-dependent mechanical
response of biological tissues during impact accidents, it is essential
to know the proper constitutive model of biological tissues with
corresponding material constants determined experimentally from
quasi-static to high loading rates. However, most of the studies on
biological tissues in literature have been focused on the low strain-
rate response. This is primarily due to the experimental difficulties
associated with dynamic testing of materials, especially on soft
materials [4]. Therefore, few experimental results on biological
tissues under high-rate loading are available. Song et al. [5] showed
that the compressive stressestrain response of porcine muscle is
highly strain-rate sensitive. Pervin and Chen [6] performed
dynamic compressive experiments on brain tissues at various
strain rates. Cheng et al. [7] conducted high-rate tensile experi-
ments on bovine tendon and observed dynamic Mullins effects on
its stressestretch behavior.

Pig skin is one of the substitutematerials for studying human skin
due to its similarity inmaterial response to human skin [8,9]. Skin has
a layered structure with its stiffness controlled by the arrangement
and density of the collagen and elastin fibers [10,11]. Since the
collagen fibers have a preferred orientation, skin is typically consid-
ered to be an inhomogeneous, orthotropic, and rate-dependent
material [2,9]. Shergold et al. recently show an orthotropic behavior
and strain-rate sensitivity of pig skin in uniaxial compression tests at
bothquasi-static andhigh rates. However, no experimental results on
biological skin under high-rate tensile loading are available despite
the fact that many failures are tensile in nature. Due to the nature of
the skinmaterial, it is expected that its tensilemechanical response is
highly rate dependent. Quasi-static material response may not be
extrapolated to the high-rate rangewithout experimental validation.

In this article, a modified split Hopkinson tension bar (SHTB),
also known as a Kolsky tension bar, was used to determine the
tensile behavior of pig skin at high strain rates. Semiconductor
strain gages were used to measure the low transmitted signals.
Controlled incident pulses ensure that the specimen deforms under
dynamic stress equilibrium at constant strain rates. An Ogden
model was used to fit the experimental results.

2. Materials and specimens

Fresh pig skin was obtained from a local butcher shop imme-
diately after slaughtering. The animal was a large crossbred white
pig, 9 months old, with a weight of about 135 kg. The skin was
preserved in 0.9% normal saline solution with a temperature of
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4 �C. The abdominal area of the pig skin was cut to make speci-
mens as shown in Fig. 1. All of the fat layer, the outer epidermis,
and hairs were carefully removed from the specimens using
a surgical scalpel.

The specimens from the dermis were 40-mm long, 25-mm
wide and 2-mm thick. They were divided into two groups with
respect to the testing directions and are indicated in Fig. 1(a): One
group of samples was cut with the length direction along the
direction of pig spine. The other group was prepared with length
perpendicular to the direction of pig spine. The samples were
mounted in a tubular shape completely enclosed around the bar
ends. This thin-wall tubular geometry minimizes the radial inertia
effects on measurements [12]. The non-uniformity of the speci-
mens shown in Fig. 1 is mainly in the plane directions of the skin.
The skin specimen is actually wrapped around the test section of
a fixed length. The more important dimension is thus the thick-
ness, the average value of which was individually measured from
four different locations. A short gage length of 2 mm is necessary
to facilitate dynamic equilibrium across the length of the soft
specimen. Longer specimen is preferred to minimize end effects.
However such geometries are not feasible at the strain rates we
intended to conduct experiments. To allow the specimen to be
loaded uniformly, the end effects on the high-rate response of
biological tissues are a by-product and will have to be further
studied in the future.

3. Static and dynamic experimental setup

An MTS 810 testing machine was used to perform the quasi-
static tensile experiments. Tensile load and displacement were

measured directly by a load cell with a capacity of 220.24 N (50 lbf)
and an extensometer of �1.25 mm, respectively. Fig. 2 also shows
the configuration of the grip system for pig skin tubular specimens.

Two grip strips, which are thin metal strips with rough gripping
surfaces, attached to both the bar surface and the inner surface of
the clamp. A skin sheet then wrap the grip strips around the two
ends of the bars to form tubular shape of the specimen. Plastic
clamps are used to press the skin specimen to the bar ends.

To investigate the tensile behavior of pig skin at high rates, we
modified a Kolsky tension bar [13], also called a split Hopkinson
tension Bar (SHTB). SHTB has been widely used to determine
dynamic tensile behavior of materials at high strain rates [14,15]. To
conduct tensile experiments on soft tissues, further modifications
are necessary to ensure valid testing conditions on the specimen.
Fig. 3 shows the experimental setup of a modified Kolsky tension
bar used in this study. The modified system consists of
a momentum bar, a striker tube, a compound incident bar, and
a transmission bar. The incident bar is composed of a high strength
maraging steel rod and an aluminum alloy rod with a diameter of
19 mm, 12.7 mm and a length of 2286 mm, 1830 mm, respectively.
The transmission bar is made of an aluminum alloy rod with
a diameter of 12.7 mm and a length of 1830 mm. The impact tube of
steel with a length of 533 mm is free to slide on the outer surface of
the steel incident bar. As the striker tube, driven by pressurized air
in a gas gun, impacts the flange head of the steel incident bar,
a tensile stress wave is generated and propagates through the
incident bar. As the tensile stress wave reaches the joint between
the steel portion and the aluminum portion of the incident bar, part
of the wave is reflected back into the steel incident bar because the
impedance mismatches between the steel and aluminum incident
bars, and the rest continues to propagate in the aluminum incident
bar to the specimen. This compound incident bar is necessary to
allow consistent impact conditions while not overloading the soft
skin specimen. When the incident pulse arrives at the specimen,
the elastic pulse is partly reflected back to the incident bar and
partly transmitted through the specimen. In the experimental
setup used in this study, the transmitted strain signal is recorded
from the semiconductor strain gages, which are glued to the
transmission bar and used tomeasureweak signals associated with
soft tissue specimens.

Fig. 1. Photographs of the pig skin specimens. (a) Abdominal region indicating two
orthogonal directions. (b) Geometry of 2-mm thick pig skin specimens. Fig. 2. Quasi-static uniaxial tension experimental setup.
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The striker needs to move above a minimum speed to obtain
consistent repeatable velocities. Incident pulses that are generated
from velocities above this minimum are too high for soft tissue
experiments. To generate low-amplitude incident pulses, while
allowing the striker move at above minimum speed, a combination
of the momentum diversion bar and the compound incident bar
was employed in this system. By absorbing most of the impact
energy of the striker in the momentum diversion bar and by
reducing the impedance in the incident bar between its steel
portion and aluminum portion, a repeatable low-amplitude inci-
dent pulse was generated at higher striker impact velocities [16].

Fig. 4 shows the configuration of the gripping system for pig skin
experiments at high strain rates. The clamped thin-tubular spec-
imen geometry shown in Fig. 4 is adopted tominimize radial inertia
effect [12,16]. Tubular shape specimen with a short gage length of
2 mm is connected to the ends of the incident and transmission
bars with clamps. As shown in Fig. 4, the inner surfaces of the
clamps and outer surfaces of the ends of the bars are enclosed by

the grip strips, which have rough clamping surfaces to minimize
the shear deformation within the gripped area and to prevent any
slippage from the grips.

The time histories of the incident, reflected, and transmitted
strain signals obtained from such a dynamic experiment are shown
in Fig. 5(a). The strain signals on the incident and the transmission
bar are recorded through strain gages mounted on these bars. A

Fig. 3. The experimental setup of a modified Kolsky tension bar: (a) Illustration of the system. (b) Schematic diagram.

Fig. 4. Attached tubular specimen, (a) illustrating the gripping method and
(b) showing the skin tissue sample mounted on the bar.

Fig. 5. Typical signals recorded from a modified Kolsky tension bar experiment on pig
skin at a strain rate of _3z2500 s�1; (a) incident, reflected, and transmitted strain
histories (b) quartz force histories.
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pulse shaper [17,18] of a copper alloy 110 with a thickness of
0.05 mm was used to obtain a suitable incident pulse, which
ensures the dynamic stress equilibrium at a nearly constant strain
rate. Fig. 5(b) shows the force histories measured from the quartz
force transducers installed on both ends of the skin specimen,
indicating dynamic equilibrium in the specimen [19,20]. Since the
specimen is in force equilibrium, the strain rate ð_3Þ in the specimen
is calculated using the following equation:

_3ðtÞ ¼ �2c0
ls

3rðtÞ (1)

where ls is the initial gage length of the specimen, c0 is the elastic
bar wave speed in the rod, and 3r is the reflected strain, respectively.
By integration, we obtain the strain in the specimen as a function of
time t. The stress (ss) in the specimen is obtained by measuring the
transmitted wave (3t):

ssðtÞ ¼ At

As
Et3tðtÞ (2)

where Et is Young’s modulus of the bar, 3t is the transmitted strain,
At and As are the cross-sectional areas of the bar and specimen,
respectively.

4. Experimental results and strain-rate effects

The quasi-static tensile experiments were performed at two
strain rates by controlling the displacement rate on the hydraulic
load frame. Fig. 6 shows the tensile stressestrain behavior of pig
skin in terms of the engineering stress and strain at strain rates of
0.005/s and 0.5/s, with the loading direction in parallel and
perpendicular to the pig spine. Each of the curves shown in Fig. 6 is
the average of three repeated experiments on three specimens
conducted under identical conditions. The curves show that the
stressestrain response of the pig skin is non-linear with a J-shape.
As shown in Fig. 6, the tensile response of pig skin demonstrates
a clear distinction in its two orthogonal directions, which is
consistent with the results reported in previous work [2]. Our
stressestrain data on pig skin at a strain rate of 0.005/s are very
close to the data on human skin obtained by Dunn et al. [21], which
are also plotted for comparison in Fig. 6. The tensile test data on
human skin by Dunn et al. are used to develop the constitutive
model of skin in literature [10,11]. However, the stressestrain data

obtained in this study are significantly different from those
obtained from tensile test on human abdominal skin by Jansen and
Rottier [22]. Shergold et al. [9] fitted tensile test data from Jansen
and Rottier using one term Ogden model. It is clear that the
stressestrain response on skin may vary widely; some of the
reasons for these observed variations may be due to sample vari-
ations and variability in testing conditions such as gripping
conditions.

In addition to quasi-static testing, the pulse-shaped SHTB was
used to perform high strain-rate tensile experiments on pig skin. As
shown in Fig 5, the incident pulse with a constant-amplitude is
achieved using a pulse shaper, which produces a nearly constant
strain-rate deformation during the experiment as indicated by the
reflected signal in Fig. 5. In order to examine the rate effects on the
tensile behavior of pig skin, tensile experiments were performed at
three high strain rates of 1700, 2500, and 3500/s. As in the slower
rate experiments, three repeated experiments on three fresh
specimens were conducted for each strain rate under identical
testing conditions. The average thickness of each specimen, which
was individually measured at four different locations, was about
1.90 mm. Fig. 7 shows the average curve of these tests at 2500/s
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Fig. 6. Tensile stressestrain curves of pig skin at strain rates of 0.5 and 0.005/s. The
data for human skin by Dunn et al. are also plotted for comparison.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

50

100

150

200

250

300

)aP
K(

ssert
S

gnireenign
E

Engineering Strain

 Test 1
 Test 2
 Test 3
 Average

Fig. 7. Tensile stressestrain curves from three repeated tests on pig skin perpendicular
to the direction of pig spine at a strain rate of 2500/s.
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strain rate, in addition to the stressestrain curves from three
repeated experiments, which demonstrate the reasonable scatter
associated with the tensile tests on pig skin tissues.

Figs. 8 and 9 show the average tensile stressestrain behavior of
pig skin at high strain rates along two orthogonal directions. The
strain-rate effects are clearly observed in the stressestrain
response. As shown in Figs. 8 and 9, the strain-rate dependency
perpendicular to the direction of pig spine is more sensitive than
that along the direction of pig spine.

5. Constitutive model

In order to describe the non-linear tensile stressestrain
behavior of pig skin, we used the Ogdenmaterial model. The Ogden
model, first developed by Ogden [23] in 1972, has beenwidely used
to determine the stressestrain relations of hyper-elastic materials
such as rubbers, polymers, and biological tissue. In the Ogden
model, the materials can be generally regarded as isotropic,
incompressible, and hyper-elastic. By introducing the strain energy
function, the stressestrain relations of materials can be derived. In
one term Odgen model, the strain energy function denoted as W
can be expressed in terms of principal stretches li in Cartesian
coordinate system (x1, x2, x3) as follows:

Wðl1; l2; l3Þ ¼ 2m
a2

�
la1 þ la2 þ la3 � 3

�
(3)

where m and amaterial constants are the shear modulus and strain
hardening exponent, respectively. For an incompressible material,
the principal stretches satisfy the constraint as:

l1l2l3 ¼ 1 (4)

The strain energy function can be expressed as a function of two
independent stretches using Eqs. (3) and (4):

cW ðl1;l2Þ ¼ W
�
l1;l2;l

�1
1 l�1

2

�
¼ 2m

a2

�
la1þla2þl�a

1 l�a
2 �3

�
(5)

In a plane stress condition s3¼ 0, the nominal stresses si are given
by [24]:

s1 ¼ vcW
vl1

; s2 ¼ vcW
vl2

(6)

For a uniaxial tension test with the loading direction along the x1
axis, the nominal stresses can be written as follows:

s1 ¼ 2m
a

h
la�1 � l�1�ða=2Þi

; s2 ¼ 0 (7)

Two constants used in the Ogden model can be determined by
experiments. Figs. 10 and 11 represent the tensile stressestrain
curves fitted with the one term Ogden model at quasi-static and
high strain rate. The Ogden constants determined experimentally
at different strain rates are summarized in Table 1. The Ogden, even
with only one term, provided a good approximation to the exper-
imental data as shown in Figs. 10 and 11, respectively.
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Fig. 9. Tensile stressestrain curves on pig skin perpendicular to the direction of pig
spine at various strain rates.
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Fig. 10. The engineering stress versus stretch ratio response of pig skin at a strain rate
of 0.005/s.
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Fig. 11. The engineering stress versus stretch ratio response of pig skin at a strain rate
of 2500/s.

Table 1
Material constants (m and a) obtained at different strain rates for Ogden constitutive
model of pig skin.

Strain rate (/s) Shear modulus, m (kPa) Strain hardening exponent, a

0.005 10 / 3 11 / 7
0.5 20 / 8 11 / 7
1700 180 / 40 11 / 7
2500 230 / 200 11 / 7
3500 300 / 370 11 / 7

* / * indicate the parallel and perpendicular direction to the spine in pig sample.
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6. Conclusions

The tensile stressestrain response of pig skin was investigated
under uniaxial stress loading conditions at both quasi-static and
dynamic strain rates. A modified Kolsky tension bar was used to
conduct the high strain-rate experiments along the two orthotropic
directions of the pig skin. Two high-resistance semiconductor strain
gages on the transmission bar were used to measure the low
transmitted signal. The loading pulse profilewas controlled such that
the skin specimen deforms at a constant strain rate under uniform
loading. A thin-walled tubular shape specimen is used to minimize
the radial inertia effect on the deforming specimen at high strain
rate. The quasi-static tensile experiments were also performed at
two strain rates under displacement control condition to examine
the strain-rate effects over a wider range. Experimental results show
that pig skin exhibits distinct orthotropic material behavior with
respect to the spine direction of pig skin. Strain-rate dependency
perpendicular to the direction of pig spine ismore sensitive than that
along the direction of pig spine. The strain-rate effects on the non-
linear stressestrain behavior are apparent as observed from exper-
iments at different strain rates. An Ogden model with one term is
sufficient to represent the tensile response of pig skin at each strain
rate. Two constants are needed for a good approximation to the
experimental data over a wide range of strain rates.
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